
Picasso: An Experiment in Hypercube Operating System Design

David K. Bradley Bobby A. A. Nazief Dirk C. Grunwald

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

Daniel A. Reed

Abstract

Any new computer system organization raises many
questions about hardware, system software, algo-
rithms, and programming; multicomputers are no ex-
ception. The commercial emergence of hypercubes
has made it possible to move many research questions
from theoretical to experimental venues. However,
hardware availability does more than permit imple-
mentation of previously tested ideas. The feasibility
of many application and operating system algorithms
can only be determined experimentally. We believe it
is difficult, if not impossible, to experimentally exam-
ine these issues singly - they interact in both obvious
and subtle ways. This paper describes the Picasso
hypercube operating system, a part of the Picasso
project at the University of Illinois. Motivated by the
need for a flexible operating system testbed, the de-
sign of Picasso has exposed several important, and
necessary, features of multicomputer operating sys-
tems designed for research. We present the design and
current performance of Picasso, discuss the lessons
learned, and conclude with an overview of future re-
search plans.

1 Introduction

The recent explosion of interest in multicomputers
can be traced to the construction of the CalTech Cos-
mic Cube [15]. Following the success of the Cosmic
Cube, Intel developed the iPSC [12], based on Intel

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

80286f80287 processor pairs; Ametek countered with
the System/l4 al so based on the Intel 80286/80287
chip set. Both the Intel iPSC and Ametek Sys-
tem/14 designs used an existing microprocessor cou-
pled with additional logic to manage communication.
The Floating Point Systems T-Series [5], based on the
Inmos Transputer [16], first integrated computation
and communication in a single processor. Ncube fol-
lowed with the Ncube/ten [6] using a custom micro-

processor containing hardware instructions for mes-
sage passing.

Despite the enormous attention generated by mul-
ticomputers, all commercial multicomputers are con-
ceptually similar. Differences do exist in communica-
tion performance and computation speed, but these
differences are quantitative rather than qualitative.
These similarities extend to commercial multicom-
puter operating systems. All provide basic support
for internode communication; some also provide the
process and memory management associated with
traditional operating systems.

The homogeneity of commercial multicomputer
networks does not reflect an intellectual consensus
on the hardware and software design paradigms. In-
stead, the immaturity of the field, both in research
and design experience, coupled with marketing pres-
sures, has encouraged conservative hardware and
software design. Designs based on existing micro-
processors provided effective experimental tools with
minimal hardware costs. Similarly, the addition of ex-
plicit send and receive primitives to sequential pro-

gramming languages such as C and Fortran is the sim-
plest extension sufficient to support message-based
parallel programming.

Any new computer system organization raises
many questions about hardware, system software, al-
gorithms, and programming; multicomputers are no
exception. On the multicomputer operating systems
front, there is much work still to be done, both in op-
erating system organization and algorithms, and in

0 ACM 1988 O-89791-278-0/88/0007/0364 $1.50

364

operating system user interfaces. Pragmatically, the
commercial emergence of multicomputers has made
it possible to move many operating systems research
questions from theoretical to experimental venues.
However, hardware availability does more than per-
mit implementation of previously tested ideas. The
feasibility of many operating system algorithms can
only be determined experimentally. We believe it is
difficult, if not impossible, to experimentally examine
these issues singly - they interact in both obvious
and subtle ways.

Unfortunately, commercial multicomputer operat-
ing systems, because they are minimal extensions of
traditional operating systems, do not provide the flex-
ibility necessary to investigate resource management.
This paper describes the Picasso hypercube oper-
ating system, a part of the Picasso project at the
University of Illinois. During the design of Picasso
we discovered several important and, we believe, nec-
essary, features of multicomputer operating systems.
Thus, this paper should be viewed as a manifesto for
multicomputer operating system design.

In $2, we present our view of the important mul-
ticomputer operating system research issues. The
current state of one Picasso implementation on the
Ametek System/l4 is the subject of 93. In $4 we
discuss the performance of the current Picasso im-
plementation, followed in $5 by a discussion of related
performance studies. We conclude in $6 with plans
for future research.

2 Motivations

In our research over the last five years[l3], we have
developed performance models of multicomputer in-
terconnection networks, permitting network compar-
isons under a variety of workloads, explored the feasi-
bility of dynamic load balancing on multicomputers,
and proposed adaptive routing algorithms for multi-
computer networks. In all our investigations of mul-
ticomputer resource management, performance has
been the guiding motivation; this is the raison d’etre
for multicomputer networks.

Unfortunately, many multicomputer resource man-
agement algorithms interact in subtle ways (e.g., dy-
namic task scheduling and message routing). A well-
crafted operating system is a gestalt, more than the
sum of its constituent algorithms. Decomposition
and separate evaluation of component policies may
not capture the subtle, but often crucial, policy in-
teractions. Analysis, by its nature, requires simplify-
ing assumptions to permit tractability. Similarly, the
cost of simulation restricts the scope and depth of

testing. Thus, the feasibility of many resource man-
agement algorithms can only be determined by con-
ducting parametric performance studies on operating
system implementations that combine variants of se-
lected resource management policies.

As noted at the outset, commercial multicom-
puter operating systems are conservative, minimal
extensions of operating systems for sequential pro-
cessors. However, just as operating systems for se-
quential processors have posed a plethora of interest-
ing, and controversial, research problems (e.g., vir-
tual memory, deadlock resolution, synchronization,
process scheduling, and software organization), mul-
ticomputer operating systems provide fertile ground
for research. In the remainder of this section, we
sketch some, but by no means all, of the important
issues we believe must be addressed by future multi-
computer operating systems.

2.1 Communication Paradigms

The current generation of hypercube-based multi-
computer networks relies on store-and-forward packet
switching using fixed path, e-cube message r0uting.l
Although the hypercube topology has a rich intercon-
nection network, with K! overlapping routes between
any two nodes separated by K hops, the e-cube rout-
ing algorithm relies on only one of these paths, the
one obtained by resolving differences in the binary
source and destination addresses from least to most
significant. Although e-cube routing is simple and free
from deadlocks, the inability to investigate alternate
routes limits its flexibility when faced with network
hot spots and highly variable communication traffic.
Ideally, a routing algorithm should use knowledge of
the network state to select the path from source to
destination node.

Adaptability is not without cost; the overhead for
acquiring network knowledge depends on the source
and frequency of that acquisition. Centralized rout-
ing techniques use global information to make routing
decisions. Because these algorithms use information
distributed from a central source, they do not adapt
quickly to changes in the network state. In contrast,
distributed routing techniques use only local informa-
tion and can quickly adapt. Unfortunately, decisions
based purely on local information are usually unsta-
ble, and packets can be trapped in transmission loops.
A hybrid routing procedure combines the two strate-
gies. In the best case, a hybrid technique achieves the

‘The Ametek 2010 and Intel iPSC/2 are the first of the
second generation multicomputers based on circuit-switched
communication.

365

stability of the centralized techniques and the adapt-
ability of the distributed techniques[$].

The performance overhead for adaptive routing al-
gorithms varies greatly, and the efficacy of a partic-
ular choice depends on communication pattern vari-
ability in both time and space. If the communica-
tion pattern is highly regular, simple, non-adaptive
algorithms like e-cube suffice. Similarly, if the traf-
fic varies rapidly in time, only a distributed rout-
ing scheme can respond quickly enough to match the
changing workload.

Adaptive routing algorithms are not universal;
some are ill-suited to certain communication work-
loads. Just as virtual memory management algo-
rithms generated considerable controversy and early
debate, the costs, implementation complexity, and
relative benefits of adaptive routing algorithms re-
main in doubt. Only by exploring the implementa-
tion overheads and realms of routing algorithm ap-
plicability can a consensus emerge. In the interim,
application programmers are best served by provid-
ing a suite of routing algorithms, each matched to
certain communication characteristics.

2.2 Task Scheduling

There are two primary approaches to parallel pro-
cessing and task scheduling2 on a multicomputer net-
work. In the first, all parallel tasks in a computa-
tion are known a priori; tasks are statically mapped
onto network nodes before the computation is initi-
ated and remain there throughout the entire compu-
tation. This paradigm corresponds naturally to two
different software design styles: a universal task and
a network of communicating tasks.

As an example of the universal task design style,
iterative partial differential equations solvers update
a regular grid of points. The value of each grid point
is successively updated using values from neighboring
points; the algorithm at each point is the same. Thus,
it is natural to partition the grid into blocks and as-
sign each block to an instance of the algorithm, a task.
Although the tessellated tasks do communicate, the
pattern is, by definition, regular. A static scheduling
algorithm need only map the (fixed) tessellation of
the single task onto the nodes of the multicomputer
network.

Alternatively, one can design a network of commu-
nicating tasks similar to that supported by CSP[7].
The topology of the network of communicating tasks
can be arbitrary and irregular, and both the amount

lAlthough the term task scheduling denotes assignment of
tasks to nodes, not processor scheduling on a single node, the
two are not independent.

and frequency of intertask data transfer may vary
during the computation. Nevertheless, the number
of tasks and their potential communication patterns
are known, permitting a static mapping of tasks onto
network nodes.

In the second approach to parallel processing on a
multicomputer network, a parallel computation is de-
fined by a dynamically created task precedence graph.
New tasks are initiated, existing tasks terminate as
the computation unfolds, and the mapping of tasks
onto network nodes is dynamic. Precedence con-
straints among tasks arise because the initiation of
new tasks depends on the completion of prior ones.
This dynamic view of computation differs in several
significant ways from the static view. In particular,
the workload varies over time, and multiple tasks may
become eligible for execution given the results from a
single task. Most importantly, tasks must be dynam-
ically mapped onto network nodes using only partial
knowledge of the global system state.

Returning to the example drawn from partial differ-
ential equations, the regular grid must be fine enough
(i.e., contain enough grid points) to capture the be-
havior of the function at its greatest variation. Where
the variation is small, considerably less computation
is required. Grid refinement techniques adapt to vari-
ation by repeatedly refining the grid in appropriate
regions. This refinement creates new tasks, each con-
taining a new block of grid points, and disrupts the
initially regular communication pattern. These new
tasks must be dynamically mapped onto processors
while simultaneously restricting the communication
overhead to acceptable levels.

Currently, the universal task paradigm is most
common, perhaps because commercial multicomputer
operating systems support neither static nor dynamic
task scheduling. Instead, programmers statically as-
sign tasks to nodes based on their knowledge of the
intertask communication pattern. Static task sched-
ulers are ancillary to multicomputer operating sys-
tems; these schedulers need only measures of com-
munication and communication performance to as-
sign tasks to nodes. In contrast, dynamic task sched-
ulers are intimately tied to the multicomputer op-
erating system structure and communication subsys-
tem. Acquisition of scheduling information for dy-
namic task assignment and task migration must com-
plement the communication network. For example,
both the adaptive message routing algorithm and the
dynamic scheduling algorithm should reflect the com-
mon communication patterns of the application. The
dearth of performance studies for both static[2] and
dynamic[l3] task scheduling suggests that additional
experiments are imperative.

366

2.3 Global Virtual Memory

The maturation of multicomputer design is reflected
by the improved performance of second generation
interconnection networks (e.g., the Intel iPSC/2 and
the Ametek 2010). Early network implementations
constrained the space of feasible algorithms, requir-
ing strict communication locality to offset the high
communication latency. Not only do second gener-
ation networks exhibit smaller average message la-
tency, but the latency is nearly independent of the
number of communication links traversed by a mes-
sage. This improved performance greatly narrows
the gap between transmission latency in multicom-
puters and global memory access times in hierarchi-
cal, shared memory systems[9], making it feasible to
consider supporting global, virtual memory’ on mul-
ticomputer networks.

Although hierarchical, shared memory multipro-
cessors provide a flat, global address space, the access
times for global and local memory often differ by an
order of magnitude. This differential encourages data
migration from global to local memory. Movement of
code pages or array sections is typical.

In contrast to shared memory systems, the access
times for local and remote memories differ by two or
three orders of magnitude, even for second generation
multicomputers; this disparity makes data migration
imperative. Because executable code segments are
read-only, code sharing is a logical first step in re-
alizing global, virtual memory. Most tasks of multi-
computer programs execute similar code, often with
identical spatial and temporal locality; the number
of distinct pages in the union of all task localities is
small. Preliminary studies[ll] suggest that assigning
code pages to “home” nodes and transferring these
pages on demand can significantly reduce the total
memory required.

In contrast to shared code, a writable, shared data
Bpace would dramatically change the multicomputer
programming paradigm, obviating message passing
primitives, but introducing synchronization primi-
tives for shared memory access. A shared, writable
data space, coupled with the implementation need
for data migration, introduces thorny data coher-
ence problems. If only one copy of shared objects
can exist, multiple tasks may compete for the single
copy. This network thrashing may offset any poten-
tial performance gains from data sharing. If multiple
copies of shared objects are permitted, the program-
mer or the compiler must insure that modifications

3In a global, virtual memory, all tasks of a multicomputer
program share a virtual memory that spans many nodes. Mod-
ification of any memory location is visible to all nodes.

are correctly propagated to all copies. In the for-
mer case, the programmer must delimit each region
of mad-only and read-write access with synchroniza-
tion primitives. In the latter, a sophisticated inter-
procedural data dependency analysis would identify
those regions of read-only and read-write access.

Data dependency analysis to extract parallelism is
well-established[l’l]. However, the performance and
overhead of operating system heuristics to reduce
memory access penalties by automatically migrating
code and data are unknown.

2.4 Heterogeneous System Resources

At present, multicomputers are homogeneous ensem-
bles of computation nodes. Although individual algo-
rithms are often homogeneous, most applications con-
sist of disparate algorithms with differing character-
istics. As an example, computer vision encompasses
image capture, low-level pixel processing, feature ex-
traction, and high-level symbolic computation. The
algorithm diversity in typical vision systems makes
them highly suitable candidates for heterogeneous
multicomputer networks containing pixel and sym-
bolic processors. Ideally, a multicomputer operating
system should support diverse nodes (e.g., vector and
symbolic) and permit configuration of node ensembles
for specific applications. Such configurations pose un-
solved problems in task scheduling, adaptive routing,
and resource management.

2.5 Peripheral Management

Second generation multicomputer networks, such as
the Intel iPSC/Z, support peripherals (e.g., secondary
storage devices) as node adjuncts rather than as pe-
ripherals of the multicomputer host. This raises sev-
eral important configuration questions, particularly
for secondary storage devices. Which is preferable,
a large number of slow, small devices that distribute
communication traffic to secondary storage across the
network, or a small number of large, fast devices that
introduce communication bottlenecks? The answer
clearly depends on the performance of the underly-
ing communication network, its software support, and
the demands of application algorithms. These issues
can only be explored by operating system instrumen-
tation and benchmarking.

If peripherals are distributed throughout the net-
work in a non-uniform pattern, the communication
traffic generated by remote access may adversely af-
fect intertask communication. Moreover, the tempo-
ral and spatial distribution of peripheral traffic will
likely differ from that generated by intertask commu-

367

nication, particularly if some devices require real-time
response (e.g., video cameras). Message priorities,
coupled with adaptive routing algorithms, may ame-
liorate the deleterious effects of a bicameral traffic
distribution.

2.6 Observations

Like traditional, uuiprocessor operating systems,
multicomputer network operating systems define a
virtual machine that not only extends the underlying
hardware but also hides its idiosyncrasies. Typically,
such virtual machines provide resource management,
scheduling, and some measure of fault tolerance. In
addition, a multicomputer network operating system
should also provide support for efficient internode
communication, parallel task scheduling, heteroge-
neous nodes and peripherals, and ideally, support for
global virtual memory. Algorithms for these resource
management problems are coupled by their mutual
need for resource status information. As noted at the
outset, we believe the coupling of resource manage-
ment algorithms is such that separate study is not
viable. Moreover, the dynamic nature of these in-
teractions makes analysis impossible and simulation
prohibitively expensive.

Existing multicomputer operating systems are too
inflexible to permit rapid replacement of specific re-
source management policies. Important policies are
often intertwined and scattered throughout the oper-
ating system. Picasso is a multicomputer operating
system schema designed to permit systematic explo-
ration of policy interactions by quickly replacing spe-
cific policies.

3 The Picasso Operating System

What are the characteristics of a research operating
system? Most importantly, it should be flezible, pro-
viding a facility for testing novel ideas, while retaining
efficiency, allowing realistic appraisd of those ideas.
It must allow experimentation and the sharing of re-
sults by many researchers. We believe such a system
will have the following properties.

Separation of Policy and Mechanism:
Long recognized as a requirement in operating
system research [18], the use of distinct policies
is predicated on a formal definition of operat-
ing system interfaces. Interface standards, the
mechanism for policy interaction, permit simul-
taneous, disjoint policy development by multiple
researchers.

Modularity:
Not only must policy and mechanism be sepa-
rate, policy implementations must be indepen-
dent. Although policies interact, and their per-
formance is interrelated, a change in the imple-
mentation of one policy should only affect other
policies through defined interfaces. For example,
changes in message routing should not affect vir-
tual memory support.

Portability:
Significant, quantitative performance differences
permit implementation of qualitatively different
policies (e.g., lower message latency permit effi-
cient implementation of global, virtual memory).
To identify those policies suitable for particular
architectures, the operating system core should
be implemented on a variety of multicomputer
networks. To be sure, some policies, such as
global virtual memory, may be prohibitively ex-
pensive on some multicomputer networks; how-
ever, quantifying performance differences pro-
vides insight into the costs and benefits of each
policy.

Instrumentation:
Accurate performance measurements of commer-
cial multicomputer operating systems or appli-
cations are difficult at best. Existing multi-
computer operating systems, organized to min-
imize overhead, lack the flexibility and facili-
ties for gathering performance data. A modu-
lar design with performance instrumentation in-
terfaces permits capture of detailed performance
data when needed. Coupled with hardware per-
formance monitors, this software instrumenta-
tion provides support for both performance mea-
surement and program debugging.

Performance:
Although it is m&e to expect the performance
of a research operating system to match that of
a crafted production system, poor performance
makes research results suspect. Some perfor-
mance degradation is acceptable, provided the
performance degradation due to modularity and
enforced interface standards penalizes all policies
equally.

In toto these design properties permit construction
of flexible, reconfigurable research operating systems;
the Picasso multicomputer operating system is one
such example. The remainder of this section describes
an implementation of Picasso on the the Ametek
System/l4, one of the few first generation multicom-
puters with a separate communication co-processor.

368

The presence of a co-processor on the Ametek Sys-
tem/14 permits partitioning of operating system com-
ponents based on functionality, while minimally af-
fecting the performance of the computational proces-
sor.

3.1 Hardware Organization

Each node of the Ametek System/l4 contains a com-
putational processor, an 8 MI35 Intel 80286 micropro-
cessor with an 80287 floating point co-processor, and
a communications processor, an Intel 80186 micro-
processor. As Figure 1 shows, these processors share
a one megabyte dual-ported memory, and each has a
software monitor stored in private PROM. In addi-
tion, the 80186 has a small amount of fast, private
memory.

r---V---7 . I ^--- r---Vd--7
8256

1 Parallel 1
i SRAM i ;

&K bytes);

8261A ;

I Serial Port 1
. L---,---l

6
To VAX To Terminal

DMA

Node 0 Only Node 0 Only

Figure 1: Block Diagram of System/l4 Node

Messages are transmitted between adjacent nodes
using serial communication lines that are connected
to one of two direct memory access (DMA) con-
trollers; however, only one DMA controller can be
active at a time.

3.2 Software Organization

As in commercial multicomputer operating systems,
every node maintains a private copy of the Picasso
operating system; each processor within a node ex-
ecutes a separate operating system component. Al-

though there is one operating system, different parts
have been designed to execute on the 80286 and 80186
processors. Quite naturally, the 80186 communica-
tion processor manages operations related to commu-
nication (e.g., transmitting messages, managing mes-
sage buffers, updating routing tables, etc.). The com-
putation processor is responsible for task manage-
ment and scheduling. These two processors commu-
nicate through a shared data structure in each node.
A cross-interrupt mechanism permits fast intranode
communication, and a hardware memory lock guar-
antees exclusive access to data structures shared by
both processors.

Internode communication is initiated by applica-
tion tasks on the computational processor, but it
is largely implemented by communication processor.
The communication processor polls the transmission
lines for incoming messages and checks a message
transmission list for outgoing messages. The trans-
mission list is shared between the two processors;
messages are enqueued by the computation proces-
sor and serviced by the communication processor.
Picasso supports several communication primitives,
including both blocking and non-blocking variants of
send and receive.

3.3 Implementation Issues

Initial performance measurements of Picasso using
existing benchmarks[l4] showed that reducing mes-
sage Iatency was a paramount consideration. Com-
munication hardware limitations on the Ametek Sys-
tem/14 dictate that the size of a message be known
to both the sending and receiving nodes before it is
transmitted. Picasso supports variable length mes-
sages by sending a hxed size message header that con-
tains the length of the full message. In addition, this
header contains routing and other information. The
following transmission, whose length is now known,
contains the message.

Each transmission incurs a fixed overhead, inde-
pendent of the size of the transmitted message. For
small messages, this overhead exceeds the cost for
message transmission. To eliminate the overhead of
a second transmission for small messages, a portion
of the message, called the tip, can be included in
the message header. The optimum tip size depends
on the communication characteristics of each applica-
tion and can be adjusted to maximize communication
performance.

As mentioned earlier, each node contains a small,
static memory accessible only by the 80186 commu-
nication processor. Moving the kernel of the Picasso
operating system to this faster, private memory de-

369

creased message latency by 30%. Because the in-
terface between the computation and communica-
tion processors was well defined, no operating sys-
tem modifications were necessary; only the bootstrap
program was changed.

k

. -- .
v 9 . .O’ .

.*a..”
. . ..

.e.
, .

00
0 32 64 96 128 160 192 224 256

Size of Transmitted Datum (bytes}

Figure 2: Simple Transfer

3.4 Performance

To provide a performance reference point, we mea-
sured the performance of Picasso using a standard
set of communication benchmarks [14]. Using these
same benchmarks, we measured the performance of
the Mars operating system[l], a commercial operat-
ing system provided with the Ametek System/l4. Al-
though these benchmarks do not reflect eystem per-
formance, they do reflect the efficiency of basic com-
munication primitives.

Figure 2 shows the communication delay for simple
message transfers between adjacent nodes. With the
exception of small message transmissions by Picasso
footnote Recall that Picasso sends small messages in
the tip. , delay is approximated by

T = (t,,z + tz) + iv * tl,

using the terms in Table 1.
The message delay includes a message preparation

time (tm), incurred by the computational processor,
and a communication latency (tr), due to the mes-
sage co-processor. The message preparation time is
the time to schedule a message, whereas the commu-
nication latency is the time to transmit a message.

Ideally, t, should be small, lest the advantage of
a communication processor be overshadowed by the
cost of scheduling messages. Similarly, a large value
for tl limits the efficiency of message transmissions.

24 , I I I I I I I I

18

6

o Mars
0 Picasso

__ ..-. _ _..-. Send/Reply -
. Exchange

0 32 64 96 128 160 192 224 256

Size of Transmitted Datum (bytes)

Figure 3: Simple Communication Benchmarks

Because the transmission delay is experienced at ev-
ery node by message traveling several hops, it is par-
ticularly for deleterious non-local communication pat-
terns.

We have derived the values oft, and tr for both
Mars and Picasso using the results of the simple mes-
sage transmission in Figure 2, combined with the data
of Figure 3. The latter figure shows the performance
of a message exchange and a send and reply. In an
exchange, both nodes first send a message; each node
then then receives the message sent by the other. In
a send and reply, the message is sent from one node,
received by the other, and returned. Analysis of the
constituent operations yields equations reflecting the
performance of the simple transfer (‘I’,t), send and
reply (T,,) and exchange (T,)

T,t = (i,+tJ)+-tb

T,, = 2(t, + tl + N ’ tb)

Z = t, + 2(tl + N * tb)

where N is the message size in bytes. Using these
equations, we can derive t,.,,, the message latency, and
tl, the message preparation time:

t,,, = T,, - Tc

tl = Te-T,t-N-tr,

Quantity Definition

&la Message Preparation Time

t1 Communication Latency

tb Transmission Time Per Byte
N Message Size (Bytes)

Table 1: Terms Describing Message Latency

77n

We can determine i?b, the per byte transmission
time, from the data in Figure 2. Combining these re-
sults, Table 2 shows the values oft, and tl obtained
for Picasso and Mars.

Table 2: Latency Components (milliseconds)

The time to transmit a single byte, tb, is the same
for both operating systems because it is largely deter-
mined by the memory bandwidth of the DMA chan-
nels and the serial transceivers. The difference in
the transmission latency suggests that Picasso in-
curs greater overhead; this is plausible, given the ad-
ditional overhead expected with an operating system
designed for flexibility. However, because Mars has
a significantly larger delay for message preparation,
the total message latency is 27% lower for Picasso.

4 A Simple Experiment 45 , I I I I

The following experiment is a typical use of a re-
search operating system. We use the modular de-
sign of Picasso to compare two message routing al-
gorithms: e-cube routing and shortest-queue routing.
The first algorithm, e-cube routing, was described
in 52. The second algorithm is an adaptive routing
method that exploits the rich interconnection of the
binary N-cube. This algorithm enqueues a message
on the link, drawn from the set of eligible paths to
the destination, that has the shortest queue of out-
standing messages. We compared the relative perfor-
mance of the two algorithms by measuring the time to
deliver messages using destinations drawn from two
destination distributions.

40

i

. . . .
. . .

35 . . .
.a'. . .

. s 30- ..'..'

: 4
.

25- . . .Q.."
i 20 2 .O'.

s 15-

IO -

5-

o Shortest-Queue

l E-cube

0 I I I
0 128 256 384 512

Size of Transmitted Datum (bytes)

The uniform distribution [14] provides equiprob-
able message destinations across all the nodes (i.e.
each node is equally likely to be the recipient for a
message). In a binary N-cube with network diameter
N, there are (g) nodes exactly K hops away.

In our experiment, each node generated three hun-

Figure 5: Hot Spot Distribution

dred messages of fixed size using the uniform distribu-
tion. Message sizes were 2, 8, 32, 128, and 512 bytes.
Figure 4 shows the elapsed time for the experiment
to complete.

It is clear from Figure 4 that there is little advan-
tage to the shortest-queue routing with this message
distribution. This is not unexpected. Because mes-
sages are drawn from a uniform distribution, and the
binary N-cube is a symmetric network, queue lengths
should be the same on all transmission links. Only

To investigate the performance of shortest-queue
routing in the presence of a network hot spot,4 we
modified the message distribution to send every fifth
message to the node designated as the hot spot. Fig-
ure 5 shows that the skewed network distribution
evinces the benefit of shortest-queue routing, yield-
ing a 25% decrease in elapsed time. We conclude that
shortest-queue routing decreases total message delay
by reducing irregularities in the skewed message dis-
tribution.

This experiment suggests that shortest-queue rout-

‘A hot spot is a region with significant network contention.

0 128 256 384 512

Size of Transmitted Datum (bytes)

Figure 4: Uniform Distribution

for short transmission times will variability of queue
lengths affect routing algorithm performance. Indeed,
Figure 4 shows that the shortest-queue algorithm is
marginally better for very short messages.

371

ing might be a good replacement for e-cube routing
as a general purpose routing algorithm. However it
is important to remember that shortest-queue rout-
ing can deadlock. Because it was designed to sup
port adaptive message routing, Picasso uses a time-
out mechanism to detect and recover from message
deadlocks. The overhead for deadlock detection and
recovery must be balanced against the potential per-
formance gains of adaptive routing.

Although the results of this experiment illustrate
the potential benefits of adaptive routing, the impor-
tant point is the ease of conducting the experiment.
The entire experiment, including writing the shortest-
queue router, required less than a day. This would not
have been possible were it not for Picasso’s modular
design.

5 The Picasso Project

Picasso is both a multicomputer operating system
and a research project. Ancillary to the’implemen-
tation of the Picasso operating system, we are de-
veloping support tools and investigating related is-
sues via both analysis and simulation. Examples in-
clude the development of a multicomputer benchmark
set [14], simulation studies of adaptive message rout-
ing algori.thms [8], simulation studies of communica-
tion paradigms and their associated hardware sup-
port [4], and performance visualization tools [lo]. In
the remainder of this section, we briefly summarize
these supporting research efforts.

To isolate the effects of hardware and software, and
to explore their interaction, Grunwald and Reed [14]
developed a multicomputer benchmark set and as-
sociated methodology. This benchmark set includes
four components: simple processor benchmarks, syn-
thetic processor benchmarks, simple communication
benchmarks, and synthetic communication bench-
marks. The simple processor benchmarks are, as the
name implies, simple enough to highlight the inter-
action between processor and compiler, including the
quality of generated code. In turn, the synthetic pro-
cessor benchmarks reflect the typical behavior of com-
putations and provide a ready comparison with sim-
ilar benchmarks on sequential machines. Communi-
cation performance is closely tied to system software.
Some hypercubes support only synchronous commu-
nication between directly connected nodes; others
provide asynchronous transmission with hardware or
software routing support. In both cases the sim-
ple communication benchmarks measure both the
message latency as a function of message size and
the number of links on which each node can simul-

taneously send or receive. For systems that sup-
port routing and asynchronous transmission, the syn-
thetic communication benchmarks reflect communi-
cation patterns in both time and space.

Kim [8] has explored adaptive packet routing al-
gorithms and their suitability for multicomputer net-
work implementation. Five existing packet routing
algorithms were studied (NRCC, random, shortest-
queue, delta, and priority queue), and based on ex-
tensive simulation studies, a new algorithm, hybrid
weighted routing, was proposed and validated. The
most promising of these algorithms are currently be-
ing implemented as adaptive routing modules in the
Picasso operating system.

To study the performance of existing and proposed
network implementations, Grunwald has conducted
parametric simulation studies of several message
routing paradigms[4], including store-and-forward
message switching, circuit switching, staged circuit
switching, wormhole circuit switching, and an adap-
tive circuit switching algorithm developed at the
NASA Jet Propulsion Laboratory. All simulations
assume an equivalent hardware implementation, iso-
lating implementation idiosyncrasies from the mes-
sage routing paradigm. Using the results of these
simulations, Grunwald is developing qualitative and
quantitative analytic models that provide insight into
network behavior.

Scientific applications on high-speed computing
systems can quickly generate vast quantities of nu-
merical data. Although the human visual system
is remarkedly adept at interpreting and identifying
anomalies in false color data, the importance of vi-
sual, scientific data presentation has only recently
been recognized[3]. Large, complex parallel systems
pose equally vexing performance interpretation prob-
lems. Data from hardware and software performance
monitors must be presented in ways that emphasize
important events while eliding irrelevant details. In
collaboration with the Center for Supercomputing
Research and Development at the University of Bli-
nois, we are developing a suite of performance visual-
ization tools. HyperView[l.O], one such tool designed
specifically for multicomputer networks, dynamically
displays node status and communication traffic.

6 Future Directions

Multicomputers have only recently begun to mature,
This maturity is reflected by the improved perfor-
mance of their interconnection networks and their
support for peripherals and heterogeneous networks.
Early network implementations constrained the space

372

of feasible algorithms, requiring strict communication
1oca;lity to achieve good system performance; second
generation networks eliminate most constraints on
the algorithm design space by reducing average mes-
sage latency. On early hypercubes, nodes could only
access peripherals via a host processor; second gener-
ation systems embed peripherals in the fabric of the
multicomputer network.

The increased performance and flexibility of sec-
ond generation multicomputer networks provide fer-
tile ground for operating systems research and devel-
opment. Developing a message passing application
currently can be likened to writing an operating sys-
tem. The user must partition his or her computation
and assign the tasks to individual nodes in a way
that balances the computational load while attempt-
ing to minimize communication costs. Conventional
operating systems do not encourage or even permit
users to provide page replacement algorithms on vir-
tual memory systems; it is unreasonable to expect
users to assign tasks to processors in a message pass-
ing system. Dynamic load balancing will permit ap-
plications to create new tasks as they execute. The
operating system will assign these tasks to nodes as
appropriate. Similarly, adaptive routing paradigms,
either in software or hardware, will avoid congested
areas of the network when transmitting messages and

accessing peripherals. Global, virtual memory will
permit efficient data sharing across network nodes.
Performance visualization tools will permit the oper-
ating system developer and application programmer
to tune the system, maximizing performance.

To reach these goals, a malleable, portable research
operating system is needed. The Picasso operating
system was designed to fill this need.

References

PI

PI

PI

PI

[51

AMETEK COMPUTER RESEARCH DIVISION. Ame-
tek System 14, Mars System Software User’s Guide
Version 1.0. Arcadia, California, 198’7.

FLOWER, J., OTTO, S., AND SALAMA, M. A
Preproceaaor for Irregular Finite Element Problems.
Tech. Rep. C3P-292, California Institute of Technol-
ogy, June 1986.

FRENKEL, K. A. The Art and Science of VisuaIiz-
iug Data. Communications of the ACM 21, 2 (Feb.
1988), 110-121.

GRUNWALD, D. C., AND REED, D. A. Networks
for Parallel Processors: Measurements aud Prognos-
tications. In these proceedings.

GUSTAFSON, H. L., HAWKINSON, S., AND
SCOTT, K. The Architecture of a Homogeneous vet-
tor Supercomputer. In Proceedings of the 1986 In-

[61

PI

PI

PI

PO1

Pll

P21

P31

WI

[153

P’31

P71

PI

373

ternational Conference on Parallel Processing (Aug.
1986), pp. 649-652.

HAYES, J. P., MUDGE, T., STOUT, Q. F.,
COLLEY, S., AND PALMER, J. A Microprocessor-
Based Hypercube Supercomputer. IEEE Micro 6, 5
(Oct. 1986), 6-17.

HOARE, C. A. R. Communicating sequential pro-
cesses. Communications of the ACM 21, 8 (Aug.
1978), 666 - 677.

KIM, C. Integrated Switching Networks; A Perfor-
mance Study. PhD thesis, University of Illiuois at
Urbana-Champaign, Department of Computer Sci-
ence, 1987.

KUCK, D. J., DAVIDSON, E. S., LAWRIE,
D. H., AND SAMEH, A. H. Parallel Supercom-
puting Today and the Cedar Approach. Science 691
(Feb. 1986).

MALONY, A. D .$ AND REED, D. A. Hyper-
View: A Tool for Performance Data Visualization.
In preparation.

POPLAWSKI, D. A., AND RICH, D. 0. Code Pag-
ing on Hypercubes. In Proceedings of the 1987Inter-
national Conference on Parallel Processing (1987),
pp. 710-736.

RATTNER, J. Concurrent Processing: A New Di-
rection in Scientific Computing. In Conference Pro-
ceedings of the 1985 Nationul Computer Conference
(1985), AFIPS Press, pp. 157-166.

REED, D. A., AND FUJIMOTO, R. M. Multicom-
puter Networks: Message-Based Parallel Processing.
The MIT Press, 1987.

REED, D. A., AND GRUNWA~D, D. C. The
Performance of Multicomputer Interconnection Net-
works. IEEE Computer 20, 6 (June 1987), 63-73.

SIETZ, C. L. The Cosmic Cube. Communications
of the ACM 28, 1 (Jan. 1985), 23-25.

WHITBY- STREVENS, C . The Transputer. In
Procedings of the f2th Internutional Symposium on
Computer Architecture (Boston, Mass., June 1985),
pp. 292-300.

WOLFE, M. 3. Optimizing Supercompilers for Su-
percomputers. PhD thesis, University of Illinois at
Urbana-Champaign, Department of Computer Sci-
ence, 1982. Report No. UUCDCS-R-82-1105.

WULF, W., COHEN, E., CORWIN, W., JONES,
A., LEVIN, R., PIERSON, C., AND POLLACK, F.
HYDRA: The Kernel of a Multiprocessor Operating
System. Communications of the ACM 17, 6 (June
1974), 337-345.

