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Abstract 

Any new computer system organization raises many 
questions about hardware, system software, algo- 
rithms, and programming; multicomputers are no ex- 
ception. The commercial emergence of hypercubes 
has made it possible to move many research questions 
from theoretical to experimental venues. However, 
hardware availability does more than permit imple- 
mentation of previously tested ideas. The feasibility 
of many application and operating system algorithms 
can only be determined experimentally. We believe it 
is difficult, if not impossible, to experimentally exam- 
ine these issues singly - they interact in both obvious 
and subtle ways. This paper describes the Picasso 
hypercube operating system, a part of the Picasso 
project at the University of Illinois. Motivated by the 
need for a flexible operating system testbed, the de- 
sign of Picasso has exposed several important, and 
necessary, features of multicomputer operating sys- 
tems designed for research. We present the design and 
current performance of Picasso, discuss the lessons 
learned, and conclude with an overview of future re- 
search plans. 

1 Introduction 

The recent explosion of interest in multicomputers 
can be traced to the construction of the CalTech Cos- 
mic Cube [15]. Following the success of the Cosmic 
Cube, Intel developed the iPSC [12], based on Intel 
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80286f80287 processor pairs; Ametek countered with 
the System/l4 al so based on the Intel 80286/80287 
chip set. Both the Intel iPSC and Ametek Sys- 
tem/14 designs used an existing microprocessor cou- 
pled with additional logic to manage communication. 
The Floating Point Systems T-Series [5], based on the 
Inmos Transputer [16], first integrated computation 
and communication in a single processor. Ncube fol- 
lowed with the Ncube/ten [6] using a custom micro- 

processor containing hardware instructions for mes- 
sage passing. 

Despite the enormous attention generated by mul- 
ticomputers, all commercial multicomputers are con- 
ceptually similar. Differences do exist in communica- 
tion performance and computation speed, but these 
differences are quantitative rather than qualitative. 
These similarities extend to commercial multicom- 
puter operating systems. All provide basic support 
for internode communication; some also provide the 
process and memory management associated with 
traditional operating systems. 

The homogeneity of commercial multicomputer 
networks does not reflect an intellectual consensus 
on the hardware and software design paradigms. In- 
stead, the immaturity of the field, both in research 
and design experience, coupled with marketing pres- 
sures, has encouraged conservative hardware and 
software design. Designs based on existing micro- 
processors provided effective experimental tools with 
minimal hardware costs. Similarly, the addition of ex- 
plicit send and receive primitives to sequential pro- 

gramming languages such as C and Fortran is the sim- 
plest extension sufficient to support message-based 
parallel programming. 

Any new computer system organization raises 
many questions about hardware, system software, al- 
gorithms, and programming; multicomputers are no 
exception. On the multicomputer operating systems 
front, there is much work still to be done, both in op- 
erating system organization and algorithms, and in 
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operating system user interfaces. Pragmatically, the 
commercial emergence of multicomputers has made 
it possible to move many operating systems research 
questions from theoretical to experimental venues. 
However, hardware availability does more than per- 
mit implementation of previously tested ideas. The 
feasibility of many operating system algorithms can 
only be determined experimentally. We believe it is 
difficult, if not impossible, to experimentally examine 
these issues singly - they interact in both obvious 
and subtle ways. 

Unfortunately, commercial multicomputer operat- 
ing systems, because they are minimal extensions of 
traditional operating systems, do not provide the flex- 
ibility necessary to investigate resource management. 
This paper describes the Picasso hypercube oper- 
ating system, a part of the Picasso project at the 
University of Illinois. During the design of Picasso 
we discovered several important and, we believe, nec- 
essary, features of multicomputer operating systems. 
Thus, this paper should be viewed as a manifesto for 
multicomputer operating system design. 

In $2, we present our view of the important mul- 
ticomputer operating system research issues. The 
current state of one Picasso implementation on the 
Ametek System/l4 is the subject of 93. In $4 we 
discuss the performance of the current Picasso im- 
plementation, followed in $5 by a discussion of related 
performance studies. We conclude in $6 with plans 
for future research. 

2 Motivations 

In our research over the last five years[l3], we have 
developed performance models of multicomputer in- 
terconnection networks, permitting network compar- 
isons under a variety of workloads, explored the feasi- 
bility of dynamic load balancing on multicomputers, 
and proposed adaptive routing algorithms for multi- 
computer networks. In all our investigations of mul- 
ticomputer resource management, performance has 
been the guiding motivation; this is the raison d’etre 
for multicomputer networks. 

Unfortunately, many multicomputer resource man- 
agement algorithms interact in subtle ways (e.g., dy- 
namic task scheduling and message routing). A well- 
crafted operating system is a gestalt, more than the 
sum of its constituent algorithms. Decomposition 
and separate evaluation of component policies may 
not capture the subtle, but often crucial, policy in- 
teractions. Analysis, by its nature, requires simplify- 
ing assumptions to permit tractability. Similarly, the 
cost of simulation restricts the scope and depth of 

testing. Thus, the feasibility of many resource man- 
agement algorithms can only be determined by con- 
ducting parametric performance studies on operating 
system implementations that combine variants of se- 
lected resource management policies. 

As noted at the outset, commercial multicom- 
puter operating systems are conservative, minimal 
extensions of operating systems for sequential pro- 
cessors. However, just as operating systems for se- 
quential processors have posed a plethora of interest- 
ing, and controversial, research problems (e.g., vir- 
tual memory, deadlock resolution, synchronization, 
process scheduling, and software organization), mul- 
ticomputer operating systems provide fertile ground 
for research. In the remainder of this section, we 
sketch some, but by no means all, of the important 
issues we believe must be addressed by future multi- 
computer operating systems. 

2.1 Communication Paradigms 

The current generation of hypercube-based multi- 
computer networks relies on store-and-forward packet 
switching using fixed path, e-cube message r0uting.l 
Although the hypercube topology has a rich intercon- 
nection network, with K! overlapping routes between 
any two nodes separated by K hops, the e-cube rout- 
ing algorithm relies on only one of these paths, the 
one obtained by resolving differences in the binary 
source and destination addresses from least to most 
significant. Although e-cube routing is simple and free 
from deadlocks, the inability to investigate alternate 
routes limits its flexibility when faced with network 
hot spots and highly variable communication traffic. 
Ideally, a routing algorithm should use knowledge of 
the network state to select the path from source to 
destination node. 

Adaptability is not without cost; the overhead for 
acquiring network knowledge depends on the source 
and frequency of that acquisition. Centralized rout- 
ing techniques use global information to make routing 
decisions. Because these algorithms use information 
distributed from a central source, they do not adapt 
quickly to changes in the network state. In contrast, 
distributed routing techniques use only local informa- 
tion and can quickly adapt. Unfortunately, decisions 
based purely on local information are usually unsta- 
ble, and packets can be trapped in transmission loops. 
A hybrid routing procedure combines the two strate- 
gies. In the best case, a hybrid technique achieves the 

‘The Ametek 2010 and Intel iPSC/2 are the first of the 
second generation multicomputers based on circuit-switched 
communication. 
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stability of the centralized techniques and the adapt- 
ability of the distributed techniques[$]. 

The performance overhead for adaptive routing al- 
gorithms varies greatly, and the efficacy of a partic- 
ular choice depends on communication pattern vari- 
ability in both time and space. If the communica- 
tion pattern is highly regular, simple, non-adaptive 
algorithms like e-cube suffice. Similarly, if the traf- 
fic varies rapidly in time, only a distributed rout- 
ing scheme can respond quickly enough to match the 
changing workload. 

Adaptive routing algorithms are not universal; 
some are ill-suited to certain communication work- 
loads. Just as virtual memory management algo- 
rithms generated considerable controversy and early 
debate, the costs, implementation complexity, and 
relative benefits of adaptive routing algorithms re- 
main in doubt. Only by exploring the implementa- 
tion overheads and realms of routing algorithm ap- 
plicability can a consensus emerge. In the interim, 
application programmers are best served by provid- 
ing a suite of routing algorithms, each matched to 
certain communication characteristics. 

2.2 Task Scheduling 

There are two primary approaches to parallel pro- 
cessing and task scheduling2 on a multicomputer net- 
work. In the first, all parallel tasks in a computa- 
tion are known a priori; tasks are statically mapped 
onto network nodes before the computation is initi- 
ated and remain there throughout the entire compu- 
tation. This paradigm corresponds naturally to two 
different software design styles: a universal task and 
a network of communicating tasks. 

As an example of the universal task design style, 
iterative partial differential equations solvers update 
a regular grid of points. The value of each grid point 
is successively updated using values from neighboring 
points; the algorithm at each point is the same. Thus, 
it is natural to partition the grid into blocks and as- 
sign each block to an instance of the algorithm, a task. 
Although the tessellated tasks do communicate, the 
pattern is, by definition, regular. A static scheduling 
algorithm need only map the (fixed) tessellation of 
the single task onto the nodes of the multicomputer 
network. 

Alternatively, one can design a network of commu- 
nicating tasks similar to that supported by CSP[7]. 
The topology of the network of communicating tasks 
can be arbitrary and irregular, and both the amount 

lAlthough the term task scheduling denotes assignment of 
tasks to nodes, not processor scheduling on a single node, the 
two are not independent. 

and frequency of intertask data transfer may vary 
during the computation. Nevertheless, the number 
of tasks and their potential communication patterns 
are known, permitting a static mapping of tasks onto 
network nodes. 

In the second approach to parallel processing on a 
multicomputer network, a parallel computation is de- 
fined by a dynamically created task precedence graph. 
New tasks are initiated, existing tasks terminate as 
the computation unfolds, and the mapping of tasks 
onto network nodes is dynamic. Precedence con- 
straints among tasks arise because the initiation of 
new tasks depends on the completion of prior ones. 
This dynamic view of computation differs in several 
significant ways from the static view. In particular, 
the workload varies over time, and multiple tasks may 
become eligible for execution given the results from a 
single task. Most importantly, tasks must be dynam- 
ically mapped onto network nodes using only partial 
knowledge of the global system state. 

Returning to the example drawn from partial differ- 
ential equations, the regular grid must be fine enough 
(i.e., contain enough grid points) to capture the be- 
havior of the function at its greatest variation. Where 
the variation is small, considerably less computation 
is required. Grid refinement techniques adapt to vari- 
ation by repeatedly refining the grid in appropriate 
regions. This refinement creates new tasks, each con- 
taining a new block of grid points, and disrupts the 
initially regular communication pattern. These new 
tasks must be dynamically mapped onto processors 
while simultaneously restricting the communication 
overhead to acceptable levels. 

Currently, the universal task paradigm is most 
common, perhaps because commercial multicomputer 
operating systems support neither static nor dynamic 
task scheduling. Instead, programmers statically as- 
sign tasks to nodes based on their knowledge of the 
intertask communication pattern. Static task sched- 
ulers are ancillary to multicomputer operating sys- 
tems; these schedulers need only measures of com- 
munication and communication performance to as- 
sign tasks to nodes. In contrast, dynamic task sched- 
ulers are intimately tied to the multicomputer op- 
erating system structure and communication subsys- 
tem. Acquisition of scheduling information for dy- 
namic task assignment and task migration must com- 
plement the communication network. For example, 
both the adaptive message routing algorithm and the 
dynamic scheduling algorithm should reflect the com- 
mon communication patterns of the application. The 
dearth of performance studies for both static[2] and 
dynamic[l3] task scheduling suggests that additional 
experiments are imperative. 
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2.3 Global Virtual Memory 

The maturation of multicomputer design is reflected 
by the improved performance of second generation 
interconnection networks (e.g., the Intel iPSC/2 and 
the Ametek 2010). Early network implementations 
constrained the space of feasible algorithms, requir- 
ing strict communication locality to offset the high 
communication latency. Not only do second gener- 
ation networks exhibit smaller average message la- 
tency, but the latency is nearly independent of the 
number of communication links traversed by a mes- 
sage. This improved performance greatly narrows 
the gap between transmission latency in multicom- 
puters and global memory access times in hierarchi- 
cal, shared memory systems[9], making it feasible to 
consider supporting global, virtual memory’ on mul- 
ticomputer networks. 

Although hierarchical, shared memory multipro- 
cessors provide a flat, global address space, the access 
times for global and local memory often differ by an 
order of magnitude. This differential encourages data 
migration from global to local memory. Movement of 
code pages or array sections is typical. 

In contrast to shared memory systems, the access 
times for local and remote memories differ by two or 
three orders of magnitude, even for second generation 
multicomputers; this disparity makes data migration 
imperative. Because executable code segments are 
read-only, code sharing is a logical first step in re- 
alizing global, virtual memory. Most tasks of multi- 
computer programs execute similar code, often with 
identical spatial and temporal locality; the number 
of distinct pages in the union of all task localities is 
small. Preliminary studies[ll] suggest that assigning 
code pages to “home” nodes and transferring these 
pages on demand can significantly reduce the total 
memory required. 

In contrast to shared code, a writable, shared data 
Bpace would dramatically change the multicomputer 
programming paradigm, obviating message passing 
primitives, but introducing synchronization primi- 
tives for shared memory access. A shared, writable 
data space, coupled with the implementation need 
for data migration, introduces thorny data coher- 
ence problems. If only one copy of shared objects 
can exist, multiple tasks may compete for the single 
copy. This network thrashing may offset any poten- 
tial performance gains from data sharing. If multiple 
copies of shared objects are permitted, the program- 
mer or the compiler must insure that modifications 

3In a global, virtual memory, all tasks of a multicomputer 
program share a virtual memory that spans many nodes. Mod- 
ification of any memory location is visible to all nodes. 

are correctly propagated to all copies. In the for- 
mer case, the programmer must delimit each region 
of mad-only and read-write access with synchroniza- 
tion primitives. In the latter, a sophisticated inter- 
procedural data dependency analysis would identify 
those regions of read-only and read-write access. 

Data dependency analysis to extract parallelism is 
well-established[l’l]. However, the performance and 
overhead of operating system heuristics to reduce 
memory access penalties by automatically migrating 
code and data are unknown. 

2.4 Heterogeneous System Resources 

At present, multicomputers are homogeneous ensem- 
bles of computation nodes. Although individual algo- 
rithms are often homogeneous, most applications con- 
sist of disparate algorithms with differing character- 
istics. As an example, computer vision encompasses 
image capture, low-level pixel processing, feature ex- 
traction, and high-level symbolic computation. The 
algorithm diversity in typical vision systems makes 
them highly suitable candidates for heterogeneous 
multicomputer networks containing pixel and sym- 
bolic processors. Ideally, a multicomputer operating 
system should support diverse nodes (e.g., vector and 
symbolic) and permit configuration of node ensembles 
for specific applications. Such configurations pose un- 
solved problems in task scheduling, adaptive routing, 
and resource management. 

2.5 Peripheral Management 

Second generation multicomputer networks, such as 
the Intel iPSC/Z, support peripherals (e.g., secondary 
storage devices) as node adjuncts rather than as pe- 
ripherals of the multicomputer host. This raises sev- 
eral important configuration questions, particularly 
for secondary storage devices. Which is preferable, 
a large number of slow, small devices that distribute 
communication traffic to secondary storage across the 
network, or a small number of large, fast devices that 
introduce communication bottlenecks? The answer 
clearly depends on the performance of the underly- 
ing communication network, its software support, and 
the demands of application algorithms. These issues 
can only be explored by operating system instrumen- 
tation and benchmarking. 

If peripherals are distributed throughout the net- 
work in a non-uniform pattern, the communication 
traffic generated by remote access may adversely af- 
fect intertask communication. Moreover, the tempo- 
ral and spatial distribution of peripheral traffic will 
likely differ from that generated by intertask commu- 
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nication, particularly if some devices require real-time 
response (e.g., video cameras). Message priorities, 
coupled with adaptive routing algorithms, may ame- 
liorate the deleterious effects of a bicameral traffic 
distribution. 

2.6 Observations 

Like traditional, uuiprocessor operating systems, 
multicomputer network operating systems define a 
virtual machine that not only extends the underlying 
hardware but also hides its idiosyncrasies. Typically, 
such virtual machines provide resource management, 
scheduling, and some measure of fault tolerance. In 
addition, a multicomputer network operating system 
should also provide support for efficient internode 
communication, parallel task scheduling, heteroge- 
neous nodes and peripherals, and ideally, support for 
global virtual memory. Algorithms for these resource 
management problems are coupled by their mutual 
need for resource status information. As noted at the 
outset, we believe the coupling of resource manage- 
ment algorithms is such that separate study is not 
viable. Moreover, the dynamic nature of these in- 
teractions makes analysis impossible and simulation 
prohibitively expensive. 

Existing multicomputer operating systems are too 
inflexible to permit rapid replacement of specific re- 
source management policies. Important policies are 
often intertwined and scattered throughout the oper- 
ating system. Picasso is a multicomputer operating 
system schema designed to permit systematic explo- 
ration of policy interactions by quickly replacing spe- 
cific policies. 

3 The Picasso Operating System 

What are the characteristics of a research operating 
system? Most importantly, it should be flezible, pro- 
viding a facility for testing novel ideas, while retaining 
efficiency, allowing realistic appraisd of those ideas. 
It must allow experimentation and the sharing of re- 
sults by many researchers. We believe such a system 
will have the following properties. 

Separation of Policy and Mechanism: 
Long recognized as a requirement in operating 
system research [18], the use of distinct policies 
is predicated on a formal definition of operat- 
ing system interfaces. Interface standards, the 
mechanism for policy interaction, permit simul- 
taneous, disjoint policy development by multiple 
researchers. 

Modularity: 
Not only must policy and mechanism be sepa- 
rate, policy implementations must be indepen- 
dent. Although policies interact, and their per- 
formance is interrelated, a change in the imple- 
mentation of one policy should only affect other 
policies through defined interfaces. For example, 
changes in message routing should not affect vir- 
tual memory support. 

Portability: 
Significant, quantitative performance differences 
permit implementation of qualitatively different 
policies (e.g., lower message latency permit effi- 
cient implementation of global, virtual memory). 
To identify those policies suitable for particular 
architectures, the operating system core should 
be implemented on a variety of multicomputer 
networks. To be sure, some policies, such as 
global virtual memory, may be prohibitively ex- 
pensive on some multicomputer networks; how- 
ever, quantifying performance differences pro- 
vides insight into the costs and benefits of each 
policy. 

Instrumentation: 
Accurate performance measurements of commer- 
cial multicomputer operating systems or appli- 
cations are difficult at best. Existing multi- 
computer operating systems, organized to min- 
imize overhead, lack the flexibility and facili- 
ties for gathering performance data. A modu- 
lar design with performance instrumentation in- 
terfaces permits capture of detailed performance 
data when needed. Coupled with hardware per- 
formance monitors, this software instrumenta- 
tion provides support for both performance mea- 
surement and program debugging. 

Performance: 
Although it is m&e to expect the performance 
of a research operating system to match that of 
a crafted production system, poor performance 
makes research results suspect. Some perfor- 
mance degradation is acceptable, provided the 
performance degradation due to modularity and 
enforced interface standards penalizes all policies 
equally. 

In toto these design properties permit construction 
of flexible, reconfigurable research operating systems; 
the Picasso multicomputer operating system is one 
such example. The remainder of this section describes 
an implementation of Picasso on the the Ametek 
System/l4, one of the few first generation multicom- 
puters with a separate communication co-processor. 
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The presence of a co-processor on the Ametek Sys- 
tem/14 permits partitioning of operating system com- 
ponents based on functionality, while minimally af- 
fecting the performance of the computational proces- 
sor. 

3.1 Hardware Organization 

Each node of the Ametek System/l4 contains a com- 
putational processor, an 8 MI35 Intel 80286 micropro- 
cessor with an 80287 floating point co-processor, and 
a communications processor, an Intel 80186 micro- 
processor. As Figure 1 shows, these processors share 
a one megabyte dual-ported memory, and each has a 
software monitor stored in private PROM. In addi- 
tion, the 80186 has a small amount of fast, private 
memory. 

r---V---7 . I ^--- r---Vd--7 
8256 

1 Parallel 1 
i SRAM i ; 

&K bytes); 

8261A ; 

I Serial Port 1 
. . . . . . . . . . . . . . L---,---l 

6 
To VAX To Terminal 

DMA 

Node 0 Only Node 0 Only 

Figure 1: Block Diagram of System/l4 Node 

Messages are transmitted between adjacent nodes 
using serial communication lines that are connected 
to one of two direct memory access (DMA) con- 
trollers; however, only one DMA controller can be 
active at a time. 

3.2 Software Organization 

As in commercial multicomputer operating systems, 
every node maintains a private copy of the Picasso 
operating system; each processor within a node ex- 
ecutes a separate operating system component. Al- 

though there is one operating system, different parts 
have been designed to execute on the 80286 and 80186 
processors. Quite naturally, the 80186 communica- 
tion processor manages operations related to commu- 
nication (e.g., transmitting messages, managing mes- 
sage buffers, updating routing tables, etc.). The com- 
putation processor is responsible for task manage- 
ment and scheduling. These two processors commu- 
nicate through a shared data structure in each node. 
A cross-interrupt mechanism permits fast intranode 
communication, and a hardware memory lock guar- 
antees exclusive access to data structures shared by 
both processors. 

Internode communication is initiated by applica- 
tion tasks on the computational processor, but it 
is largely implemented by communication processor. 
The communication processor polls the transmission 
lines for incoming messages and checks a message 
transmission list for outgoing messages. The trans- 
mission list is shared between the two processors; 
messages are enqueued by the computation proces- 
sor and serviced by the communication processor. 
Picasso supports several communication primitives, 
including both blocking and non-blocking variants of 
send and receive. 

3.3 Implementation Issues 

Initial performance measurements of Picasso using 
existing benchmarks[l4] showed that reducing mes- 
sage Iatency was a paramount consideration. Com- 
munication hardware limitations on the Ametek Sys- 
tem/14 dictate that the size of a message be known 
to both the sending and receiving nodes before it is 
transmitted. Picasso supports variable length mes- 
sages by sending a hxed size message header that con- 
tains the length of the full message. In addition, this 
header contains routing and other information. The 
following transmission, whose length is now known, 
contains the message. 

Each transmission incurs a fixed overhead, inde- 
pendent of the size of the transmitted message. For 
small messages, this overhead exceeds the cost for 
message transmission. To eliminate the overhead of 
a second transmission for small messages, a portion 
of the message, called the tip, can be included in 
the message header. The optimum tip size depends 
on the communication characteristics of each applica- 
tion and can be adjusted to maximize communication 
performance. 

As mentioned earlier, each node contains a small, 
static memory accessible only by the 80186 commu- 
nication processor. Moving the kernel of the Picasso 
operating system to this faster, private memory de- 
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creased message latency by 30%. Because the in- 
terface between the computation and communica- 
tion processors was well defined, no operating sys- 
tem modifications were necessary; only the bootstrap 
program was changed. 
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Figure 2: Simple Transfer 

3.4 Performance 

To provide a performance reference point, we mea- 
sured the performance of Picasso using a standard 
set of communication benchmarks [14]. Using these 
same benchmarks, we measured the performance of 
the Mars operating system[l], a commercial operat- 
ing system provided with the Ametek System/l4. Al- 
though these benchmarks do not reflect eystem per- 
formance, they do reflect the efficiency of basic com- 
munication primitives. 

Figure 2 shows the communication delay for simple 
message transfers between adjacent nodes. With the 
exception of small message transmissions by Picasso 
footnote Recall that Picasso sends small messages in 
the tip. , delay is approximated by 

T = (t,,z + tz) + iv * tl, 

using the terms in Table 1. 
The message delay includes a message preparation 

time (tm), incurred by the computational processor, 
and a communication latency (tr), due to the mes- 
sage co-processor. The message preparation time is 
the time to schedule a message, whereas the commu- 
nication latency is the time to transmit a message. 

Ideally, t, should be small, lest the advantage of 
a communication processor be overshadowed by the 
cost of scheduling messages. Similarly, a large value 
for tl limits the efficiency of message transmissions. 

24 , I I I I I I I I 

18 

6 

o Mars 
0 Picasso 

__ ..-. _ _..-. Send/Reply - 
. . . . . Exchange 

0 32 64 96 128 160 192 224 256 

Size of Transmitted Datum (bytes) 

Figure 3: Simple Communication Benchmarks 

Because the transmission delay is experienced at ev- 
ery node by message traveling several hops, it is par- 
ticularly for deleterious non-local communication pat- 
terns. 

We have derived the values oft, and tr for both 
Mars and Picasso using the results of the simple mes- 
sage transmission in Figure 2, combined with the data 
of Figure 3. The latter figure shows the performance 
of a message exchange and a send and reply. In an 
exchange, both nodes first send a message; each node 
then then receives the message sent by the other. In 
a send and reply, the message is sent from one node, 
received by the other, and returned. Analysis of the 
constituent operations yields equations reflecting the 
performance of the simple transfer (‘I’,t), send and 
reply (T,,) and exchange (T,) 

T,t = (i,+tJ)+-tb 

T,, = 2(t, + tl + N ’ tb) 

Z = t, + 2(tl + N * tb) 

where N is the message size in bytes. Using these 
equations, we can derive t,.,,, the message latency, and 
tl, the message preparation time: 

t,,, = T,, - Tc 

tl = Te-T,t-N-tr, 

Quantity Definition 

&la Message Preparation Time 

t1 Communication Latency 

tb Transmission Time Per Byte 
N Message Size (Bytes) 

Table 1: Terms Describing Message Latency 
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We can determine i?b, the per byte transmission 
time, from the data in Figure 2. Combining these re- 
sults, Table 2 shows the values oft, and tl obtained 
for Picasso and Mars. 

Table 2: Latency Components (milliseconds) 

The time to transmit a single byte, tb, is the same 
for both operating systems because it is largely deter- 
mined by the memory bandwidth of the DMA chan- 
nels and the serial transceivers. The difference in 
the transmission latency suggests that Picasso in- 
curs greater overhead; this is plausible, given the ad- 
ditional overhead expected with an operating system 
designed for flexibility. However, because Mars has 
a significantly larger delay for message preparation, 
the total message latency is 27% lower for Picasso. 

4 A Simple Experiment 45 , I I I I 

The following experiment is a typical use of a re- 
search operating system. We use the modular de- 
sign of Picasso to compare two message routing al- 
gorithms: e-cube routing and shortest-queue routing. 
The first algorithm, e-cube routing, was described 
in 52. The second algorithm is an adaptive routing 
method that exploits the rich interconnection of the 
binary N-cube. This algorithm enqueues a message 
on the link, drawn from the set of eligible paths to 
the destination, that has the shortest queue of out- 
standing messages. We compared the relative perfor- 
mance of the two algorithms by measuring the time to 
deliver messages using destinations drawn from two 
destination distributions. 
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The uniform distribution [14] provides equiprob- 
able message destinations across all the nodes (i.e. 
each node is equally likely to be the recipient for a 
message). In a binary N-cube with network diameter 
N, there are (g) nodes exactly K hops away. 

In our experiment, each node generated three hun- 

Figure 5: Hot Spot Distribution 

dred messages of fixed size using the uniform distribu- 
tion. Message sizes were 2, 8, 32, 128, and 512 bytes. 
Figure 4 shows the elapsed time for the experiment 
to complete. 

It is clear from Figure 4 that there is little advan- 
tage to the shortest-queue routing with this message 
distribution. This is not unexpected. Because mes- 
sages are drawn from a uniform distribution, and the 
binary N-cube is a symmetric network, queue lengths 
should be the same on all transmission links. Only 

To investigate the performance of shortest-queue 
routing in the presence of a network hot spot,4 we 
modified the message distribution to send every fifth 
message to the node designated as the hot spot. Fig- 
ure 5 shows that the skewed network distribution 
evinces the benefit of shortest-queue routing, yield- 
ing a 25% decrease in elapsed time. We conclude that 
shortest-queue routing decreases total message delay 
by reducing irregularities in the skewed message dis- 
tribution. 

This experiment suggests that shortest-queue rout- 

‘A hot spot is a region with significant network contention. 
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Figure 4: Uniform Distribution 

for short transmission times will variability of queue 
lengths affect routing algorithm performance. Indeed, 
Figure 4 shows that the shortest-queue algorithm is 
marginally better for very short messages. 
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ing might be a good replacement for e-cube routing 
as a general purpose routing algorithm. However it 
is important to remember that shortest-queue rout- 
ing can deadlock. Because it was designed to sup 
port adaptive message routing, Picasso uses a time- 
out mechanism to detect and recover from message 
deadlocks. The overhead for deadlock detection and 
recovery must be balanced against the potential per- 
formance gains of adaptive routing. 

Although the results of this experiment illustrate 
the potential benefits of adaptive routing, the impor- 
tant point is the ease of conducting the experiment. 
The entire experiment, including writing the shortest- 
queue router, required less than a day. This would not 
have been possible were it not for Picasso’s modular 
design. 

5 The Picasso Project 

Picasso is both a multicomputer operating system 
and a research project. Ancillary to the’implemen- 
tation of the Picasso operating system, we are de- 
veloping support tools and investigating related is- 
sues via both analysis and simulation. Examples in- 
clude the development of a multicomputer benchmark 
set [14], simulation studies of adaptive message rout- 
ing algori.thms [8], simulation studies of communica- 
tion paradigms and their associated hardware sup- 
port [4], and performance visualization tools [lo]. In 
the remainder of this section, we briefly summarize 
these supporting research efforts. 

To isolate the effects of hardware and software, and 
to explore their interaction, Grunwald and Reed [14] 
developed a multicomputer benchmark set and as- 
sociated methodology. This benchmark set includes 
four components: simple processor benchmarks, syn- 
thetic processor benchmarks, simple communication 
benchmarks, and synthetic communication bench- 
marks. The simple processor benchmarks are, as the 
name implies, simple enough to highlight the inter- 
action between processor and compiler, including the 
quality of generated code. In turn, the synthetic pro- 
cessor benchmarks reflect the typical behavior of com- 
putations and provide a ready comparison with sim- 
ilar benchmarks on sequential machines. Communi- 
cation performance is closely tied to system software. 
Some hypercubes support only synchronous commu- 
nication between directly connected nodes; others 
provide asynchronous transmission with hardware or 
software routing support. In both cases the sim- 
ple communication benchmarks measure both the 
message latency as a function of message size and 
the number of links on which each node can simul- 

taneously send or receive. For systems that sup- 
port routing and asynchronous transmission, the syn- 
thetic communication benchmarks reflect communi- 
cation patterns in both time and space. 

Kim [8] has explored adaptive packet routing al- 
gorithms and their suitability for multicomputer net- 
work implementation. Five existing packet routing 
algorithms were studied (NRCC, random, shortest- 
queue, delta, and priority queue), and based on ex- 
tensive simulation studies, a new algorithm, hybrid 
weighted routing, was proposed and validated. The 
most promising of these algorithms are currently be- 
ing implemented as adaptive routing modules in the 
Picasso operating system. 

To study the performance of existing and proposed 
network implementations, Grunwald has conducted 
parametric simulation studies of several message 
routing paradigms[4], including store-and-forward 
message switching, circuit switching, staged circuit 
switching, wormhole circuit switching, and an adap- 
tive circuit switching algorithm developed at the 
NASA Jet Propulsion Laboratory. All simulations 
assume an equivalent hardware implementation, iso- 
lating implementation idiosyncrasies from the mes- 
sage routing paradigm. Using the results of these 
simulations, Grunwald is developing qualitative and 
quantitative analytic models that provide insight into 
network behavior. 

Scientific applications on high-speed computing 
systems can quickly generate vast quantities of nu- 
merical data. Although the human visual system 
is remarkedly adept at interpreting and identifying 
anomalies in false color data, the importance of vi- 
sual, scientific data presentation has only recently 
been recognized[3]. Large, complex parallel systems 
pose equally vexing performance interpretation prob- 
lems. Data from hardware and software performance 
monitors must be presented in ways that emphasize 
important events while eliding irrelevant details. In 
collaboration with the Center for Supercomputing 
Research and Development at the University of Bli- 
nois, we are developing a suite of performance visual- 
ization tools. HyperView[l.O], one such tool designed 
specifically for multicomputer networks, dynamically 
displays node status and communication traffic. 

6 Future Directions 

Multicomputers have only recently begun to mature, 
This maturity is reflected by the improved perfor- 
mance of their interconnection networks and their 
support for peripherals and heterogeneous networks. 
Early network implementations constrained the space 
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of feasible algorithms, requiring strict communication 
1oca;lity to achieve good system performance; second 
generation networks eliminate most constraints on 
the algorithm design space by reducing average mes- 
sage latency. On early hypercubes, nodes could only 
access peripherals via a host processor; second gener- 
ation systems embed peripherals in the fabric of the 
multicomputer network. 

The increased performance and flexibility of sec- 
ond generation multicomputer networks provide fer- 
tile ground for operating systems research and devel- 
opment. Developing a message passing application 
currently can be likened to writing an operating sys- 
tem. The user must partition his or her computation 
and assign the tasks to individual nodes in a way 
that balances the computational load while attempt- 
ing to minimize communication costs. Conventional 
operating systems do not encourage or even permit 
users to provide page replacement algorithms on vir- 
tual memory systems; it is unreasonable to expect 
users to assign tasks to processors in a message pass- 
ing system. Dynamic load balancing will permit ap- 
plications to create new tasks as they execute. The 
operating system will assign these tasks to nodes as 
appropriate. Similarly, adaptive routing paradigms, 
either in software or hardware, will avoid congested 
areas of the network when transmitting messages and 

accessing peripherals. Global, virtual memory will 
permit efficient data sharing across network nodes. 
Performance visualization tools will permit the oper- 
ating system developer and application programmer 
to tune the system, maximizing performance. 

To reach these goals, a malleable, portable research 
operating system is needed. The Picasso operating 
system was designed to fill this need. 
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