
A TIME WARP IMPLEMENTATION OF SHARKS WORLD

Matthew T. Presley
Peter L. Reiher

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91109

Steven Bellenot

Department of Mathematics
The Florida State University
Tallahassee, Florida 32306

ABSTRACT

This paper discusses the TWOS implementation of the Sharks
World simulation, a simple simulation of sharks and fish
swimming through a toroidal world. It covers the design of the
simulation and presents performance results for it. Sharks World
performs very well under TWOS in a variety of configurations.
Also, the paper discusses the process of writing the application and
changes and improvements that could be made to it.

1. INTRODUCTION

Sharks World is a simulation of sharks and fish swimming
through a two-dimensional toroidal world. When a shark and a
fish are within a certain distance, the shark will eat the fish,
causing the fish to disappear from the simulation. Sharks and fish
do not interact in any other way. Sharks may swim through each
other, as may fish. Each shark or fish starts with an initial speed
and direction of movement. Neither changes at any time for any
fish or shark. Sharks and fish do not reproduce.

Sharks World is not meant to be a realistic biological simula-
tion. Rather, it is an extremely simple benchmark demonstrating a
basic form of objects interacting at a distance [Conklin et al.
1990]. Sharks World has been implemented using several
different types of synchronization mechanisms for parallel
simulation. This paper describes an implementation using an op-
timistic synchronization method. It was written for the Time Warp
Operating System, an optimistic parallel discrete event simulation
operating system developed at the Jet Propulsion Laboratory.

The Time Warp Operating System (TWOS) is a special-
purpose distributed operating system whose goal is to run discrete
event simulations on parallel hardware as quickly as possible.
TWOS embodies the theory of virtual time, described in [Jefferson
1985].

TWOS extracts parallelism (and hence, speedup) from a
distributed simulation by running the component objects of the
simulation simultaneously on different nodes of the parallel
processor. Simulation objects communicate via timestamped
messages, and the arrival of one or more messages at an object at a
given simulation time causes an event at that object. TWOS
handles all synchronization between the nodes of the parallel
processor, allowing the simulation designer to view the system as
executing all events in strict timestamp order. In actuality, TWOS
permits faster nodes to run ahead of slower nodes in simulation
time. If an event proves to have been done before an earlier event
that has an effect on it, TWOS maintains sufficient information to
completely roll back that erroneous event and undo any of its
consequences. A more complete description of the system can be
found in [Jefferson et al. 1987].

TWOS has extracted high speedups from many different
simulations, including theater-level military simulations [Wieland
et al. 1989], computer network simulations [Presley et al. 1989],
and biological simulations [Ebling et al. 1989]. One of the
fundamental benchmarks used by TWOS is a simulation called
Pucks [Hontalas and Beckman 1989]. Pucks simulates two-
dimensional pucks moving and colliding on a frictionless table
with cushioned sides. This problem is similar to Sharks World, as
both simulations deal with objects moving in space and interacting
at a distance. Pucks and Sharks World have some significant
differences, however, in the form of the playing surface and in the
rules of interaction.

This paper describes the TWOS implementation of Sharks
World. It discusses the architecture of the simulation, presents
performance figures for several different Sharks World scenarios,

and examines why TWOS provides the performance it does. It
also discusses methods of improving TWOS’ performance on this
application, and the possible effects of adding more complexity to
the simulation.

2. SHARKS WORLD IN TWOS

The TWOS implementation of Sharks World divides the
toroidal world up into a varying number of equally sized sectors.
The world can be split into an arbitrary number of sectors, and the
horizontal and vertical dimensions of a sector need not be equal.
Each sector has responsibility for actions happening in its area of
space. These sectors are the only objects in the simulation. Sharks
and fish are not explicitly modelled as objects.

Each sector has responsibility for keeping track of all sharks
and fish currently within its boundaries. A sector also has respon-
sibility for notifying other sectors when one of its sharks or fish
enters that other sector, or when a shark’s attack radius first
crosses the boundary of that other sector. Unlike the
implementation in [Conklin et al. 1990], there are no special
border regions within sectors.

Every sector maintains two lists, one of fish within the sector
and one of sharks that may kill fish within the sector. The shark
list contains not only those sharks that are currently within the
sector, but also all sharks whose attack radius currently intersects
the sector. These latter are called visible sharks. The sector
determines when a fish or shark will leave, and which sector it will
enter. The sector then sends a message to the next sector the
creature will enter, informing it when the creature will arrive, at
what point, and with what velocity and direction of movement.
That next sector will in turn determine where the creature is to go
next, and when, and send another message to that effect to the next
sector to be entered.

The other activity in the model is sharks preying on fish.
Sharks will eat any fish within their attack radius. Since the
simulation is not being run in time steps, and since sharks are
always hungry and take no time to eat a fish, the issue of which of
two fishes in the attack radius will be eaten does not arise. If they
enter the shark’s attack radius at different times, the shark will eat
both of them at their differing moments of entry. In the very rare
cases where two fish enter the radius at exactly the same instant in
simulation time, the shark will eat both of them at once. Eating a
fish is not an event in the simulation. Only crossing sector
boundaries and having a shark’s attack radius cross sector
boundaries are modelled as events.

When a fish enters a sector, the sector compares the fish’s data
to that of all sharks the sector knows about, both those within the
sector and those visible in other sectors. The sector determines
which shark, if any, will kill the fish. If no shark will kill the fish,
the sector determines which sector the fish will enter next, and
sends a message notifying that sector of the fishes arrival in the
simulation future. If the fish does fall within the attack radius of a
known shark, the fish is marked as being dead. No message is sent
to the next sector. However, the sector does not yet discard its
information about the fish, as some other shark may enter the
sector later, yet get to the fish before the first shark.

When a shark becomes visible to a sector, the sector currently
responsible for that shark sends a message to the sector about to
see the shark. This message is similar to the fish arrival message.
It contains the shark’s position at the simulation time when it
became visible, the shark’s speed, and its direction of motion. The
sector

receiving the message checks its list of fish to determine which
fish the shark will attack. Both live and dead fish are checked,
since this shark may get to a supposedly dead fish before the shark
that appears to have eaten it. Any fish previously listed as alive
becomes dead. For all such fish, the sector performing this
computation sent a message to the next sector the fish was to enter.
That message must be cancelled, as dead fish don’t move any
more.

TWOS does not currently contain a message cancellation
primitive, so cancellation of messages relating to deceased fish is
done within the application. Sectors maintain information about
the fish entry messages they have sent to other sectors. Should a
shark enter a sector and eat a fish previously expected to escape
the sector, this information will indicate that some other sector was
erroneously informed of the fish’s arrival. That erroneous
message is cancelled by sending another message directing the
receiver to ignore the first message. Note that this behavior is not
related in any way to Time Warp message cancellation, and has
nothing to do with Time Warp rollback. Such cancellations are
equally necessary in the sequential version of the simulation, as
they represent explicitly modelled guesses about future behavior
and correction of those guesses as better information arrives.

Once a sector has marked a fish as dead, it knows that the fish
will definitely die. The only uncertainty is which shark will eat it,
at which point, at what time. Therefore, the sector maintains
information about dead fish until it is certain that the fish will not
be eaten by some other shark at some earlier simulation time.

A sector’s lists of sharks and fish is garbage collected during
each event. If the time of departure of the fish is before the time
of the current event, that entry can be garbage collected. Also, if
the time at which the shark’s attack radius no longer intersects the
sector has passed, the shark’s entry can be garbage collected.
Finally, if the time at which a fish died is earlier than the time of
the current event, the fish’s entry can be garbage collected.

3. THE PERFORMANCE OF TWOS SHARKS WORLD

The TWOS implementation of Sharks World achieves very
good performance. It produces speedups of up to 29.5, often has
efficiencies of greater than 50%, and sometimes achieves up to
69% of the theoretically possible speedup, as determined by
critical path analysis. This section presents some performance
results for TWOS Sharks World.

In the curves presented, two internal parameters of the simula-
tion are varied. First, the total number of creatures present in the
world at the start of the simulation is varied from 32 to 2048. (In
each case, half of the creatures are sharks and half are fish.)
Second, the decomposition of the world into sectors is varied. The
world is split into either 64 or 256 sectors. Since sectors are the
only objects in the simulation, the number of sectors puts a firm
upper limit on the possible parallelism of the simulation. For
instance, a simulation of a world split into 16 sectors cannot possi-
ble improve its speedup on 16 nodes by adding more nodes. (Runs
were made for 4-by-4 sector decompositions, but the parallelism
available in a simulation with only 16 objects is limited, so none of
these curves are plotted here.)

The performance results shown here are for runs of 2000 time
units. Creatures move at speeds approximately between 50 and
200 space units per time unit. The world is 64K space units on
each side, so a typical creature would swim around the toroidal
world 3 times during the run. Other Sharks World studies have
used simulations that ran 100,000 time units, but the limited
testing time available made it impossible to make sufficient TWOS
runs at that length.

The configuration files used to assign sectors to nodes of the
parallel processor were not carefully balanced. Assignment was
round robin, ensuring that no node received more than 1 more
sector than any other. No attempt was made to ensure that each
node performed about the same amount of work as its fellows.
Dynamic load management was not used for these runs.

The runs were made with TWOS version 2.4 running on the
BBN GP1000 under the Mach operating system. A few perfor-
mance figures are also included for the same machine running the
Chrysalis Operating System.

The performance figures presented are speedups against the
run time of TWSIM 2.4. TWSIM is a fast sequential simulator
that runs on one node of the same hardware as the TWOS runs. It
uses a splay-tree to implement a single event list, and has been
extensively optimized for speed. It uses strictly sequential
methods, with no rollbacks or antimessages, and no parallelism.
TWSIM has the same user interface as TWOS, so exactly the same
user application is run under both systems. TWOS speedups are
found by dividing the TWSIM time for an application by the
TWOS time. In all cases, each point plotted is the average of three
separate runs using the identical configuration.

No runs with more than 2048 creatures are shown here.
TWOS has handled Sharks World runs with 32,000 creatures, but
TWSIM cannot handle many more than 2048 creatures with the
current implementation of Sharks World, so good speedup
numbers are not possible for larger numbers of creatures.

Figure 1 shows the speedup TWOS achieved for runs with the
world divided into an 8-by-8 grid of sectors. The different curves
show the speedups achieved for numbers of creatures between 32
and 2048. As the number of creatures increases, the average
amount of work necessary to detect fish within the attack radii of
sharks increases, increasing granularity. As expected, TWOS
provides increasingly better speedups as the granularity of the
computation increases. The best speedups are for 2048 creatures,
the case with the highest granularity.

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

32 64 128 256 512

1024 2048

S
p
e
e
d
u
p

Nodes

Figure 1. 8X8 Sector Sharks World Speedup

Figure 1 also demonstrates the importance of configuration
and load balancing. For large numbers of creatures, the speedup
curves show plateaus between 32 and 64 nodes, with little or no
performance improvement at 40, 48, or 56 nodes. The reason for
this phenomenon is that the entire simulation consists of 64 objects
(one per sector), each of which does approximately the same
amount of work. Thus, configurations that have exactly the same
number of objects on each nodes are better balanced. In particular,

when the number of nodes exceeds 32, some nodes have only one
object, while other nodes have 2. The speedup for these runs is
limited by the speed of the nodes hosting two objects, just as it was
for 32 nodes. At 64 nodes, each node has exactly one object,
allowing a substantial increase in speedup.

8-by-8 sector runs were not made for more than 64 nodes.
Since the simulation only contains 64 objects, using more than 64
nodes would never improve speedups.

The speedups obtained for the 8-by-8 sector runs ranged
between .63 (a slowdown) for 1024 creatures on 2 nodes to 25.5
for 2048 creatures on 64 nodes. The best speedup obtained for a
32 creature run was 2.75 on 20 nodes, indicating how little
speedup is available for that simulation. Efficiencies (defined as
the speedup divided by the number of nodes) ranged from 4% (32
creatures on 64 nodes) to 60% (2048 creatures on 8 nodes). The
efficiency for the best speedup was 40%.

Figure 2 shows the same curves for a division of the world
into 16-by-16 sectors, or 256 total objects. Points are shown only
for 512, 1024, and 2048 creatures, as those simulations provided
the best speedups. The maximum speedups obtained by this
version of Sharks World was 24.45, lower than the maximum for
the 8-by-8 version. More interesting, though, is that the 16-by-16
sector runs do not show the plateaus that the 8-by-8 sector runs
showed. Since there are more objects in the 16-by-16 sector runs,
TWOS is able to better balance the runs are 48 or 56 nodes. If we
were able to run on 192 nodes, the plateau would probably
reappear, running no faster than 128 nodes, with a big gain at 256
nodes, as each object got its own node.

0.00

5.00

10.00

15.00

20.00

25.00

0 8 16 24 32 40 48 56 64

512 1024 2048

S
p
e
e
d
u
p

Nodes

Figure 2. 16-by-16 Sector Sharks World Speedup

The 16-by-16 sector runs probably do not achieve as high a
speedup as the corresponding 8-by-8 sector runs for 1024 and
2048 creatures because their granularity of computation is lower.
The same number of creatures are present for both cases, and they
swim to the same places, so each sector has fewer creatures to keep
track of. Much of the granularity of Sharks World events comes
from comparing lists of sharks and fish to check for intersections,
so fewer entries in each sector’s list means less work per sector,
leading to a higher ratio of overhead to user work, and hence less
speedup. The granularity of the 8-by-8 sector simulation with
2048 creatures is around 7 milliseconds per event. For the 16-by-
16 sector 2048 creature runs, the granularity is 3 milliseconds per
event. (TWOS actually gives better speedups for most simulations
with granularities around 10 or 15 milliseconds per event.)

The 16-by-16 sector decomposition of 512 creature runs actu-
ally provides better speedups than the 8-by-8 sector decomposition

for all numbers of nodes except 2 nodes. Since the same
granularity argument applies here, the difference is probably due
to superior load balancing by the 16-by-16 sector decomposition
for 512 creatures.

Figure 3 shows some results for runs made on the Chrysalis
Operating System. Both Mach and Chrysalis run on the same
hardware, so the differences are wholly due to software, mostly
below the level of TWOS. Chrysalis is a less capable system, but
is also smaller and less intrusive. Figure 3 shows the two speedup
curves for 8-by-8 sector 2048 creature runs under both Chrysalis
and Mach. There is little difference, except that the Chrysalis
speedup for 64 nodes is a bit higher. This is due to certain Mach
initialization overheads that occur for high numbers of nodes. The
phenomenon is less apparent at lower numbers of nodes because
the overhead depends on the number of nodes, and because the
longer run times of the low number of nodes tend to conceal the
initialization overhead.

0

5

10

15

20

25

30

0 8 16 24 32 40 48 56 64

Mach Chrysalis

S
p
e
e
d
u
p

Nodes

Figure 3. 8-by-8 Sector 2048 Creature Speedups

Figure 4 shows the 16-by-16 sector 2048 creature speedups
for both Mach and Chrysalis. Here, the Chrysalis improvement
becomes clear much sooner, as the load balancing problem caused
by the small number of objects in the 8-by-8 sector runs does not
obscure it. Starting around 40 nodes, the Chrysalis version of
TWOS gets much better speedup than the Mach version. At 64
nodes, the Chrysalis version of this run got the best speedup
obtained from any Sharks World run under TWOS, 29.5.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 8 16 24 32 40 48 56 64

Mach Chrysalis

S
p
e
e
d
u
p

Nodes

Figure 4. 16-by-16 Sector 2048 Creature Speedups

TWOS normally runs with lazy cancellation of messages
[Berry 1986]. Sharks World is an application that should get great
benefit from lazy cancellation of messages, since the only
messages ever cancelled in Sharks Worlds runs are those sent
when fish expected to cross a sector boundary later prove to have
been eaten. As [Reiher et al 1990] showed, different applications
can perform well or poorly with either lazy cancellation or
aggressive cancellation. Figure 5 shows Sharks World’s
performance with lazy cancellation vs. aggressive cancellation.
(TWOS contains a switch permitting it to run in either mode.)

0

5

10

15

20

25

30

0 8 16 24 32 40 48 56 64

Lazy Aggressive

S
p
e
e
d
u
p

Nodes

Figure 5. Lazy Versus Aggressive Cancellation Speedups

Figure 5 demonstrates that lazy cancellation has a clear advan-
tage over aggressive cancellation for Sharks World, particularly at
large numbers of nodes. (The lazy cancellation speedup is better
than the aggressive cancellation speedup for all points but one. At
16 nodes, aggressive cancellation’s speedup is insignificantly
better.) Somewhat surprisingly, though, lazy cancellation is not all
that much better. At most, it is around 25% faster than aggressive
cancellation. But the aggressive cancellation run performs far

more message cancellations than the lazy cancellation run does, by
as high a factor as 838. Sharks World thus demonstrates an actual
application for which lazy cancellation is really better. Also, it
demonstrates that negative messages and rollbacks may not have
disastrous effects on a simulation’s performance. Despite sending
as many as 76,000 negative messages, TWOS still provided
reasonable performance. Clearly, most of the negative message
activity took place off the critical path of computation, thereby
impeding the important computation very little. This result serves
as further evidence of the practicality of optimistic synchronization
methods.

TWSIM can determine the critical path length of a simulation,
where critical path length is defined as the longest set of event run
times that must be processed sequentially. Critical path length sets
a theoretical limit on the speedup obtainable by a simulation.
(TWOS is able to exceed critical path speedup under certain
conditions [Berry 1986], but does not do so for typical
applications.) For a 4-by-4 sector simulation with 2048 creatures,
TWOS on 16 nodes was able to achieve better than 69% of the
critical path speedup.

TWSIM is unable to handle runs of Sharks World with many
more than 2048 creatures, making it impossible to get a proper
speedup figure for such runs. However, a TWOS run with 32,000
creatures was made successfully. While normal speedup figures
are unavailable, some speedup comparisons can be made. This run
was made 16-by-16 sectors, out to 2000 time units. One of the
statistics produced was total committed event time. Total
committed event time is constant between TWOS runs and
TWSIM runs, by definition, as it is the sum of all time spent
running committed events in TWOS. Since TWSIM runs only
committed events, its event time should be the same.

One measure of speedup is zero overhead speedup. In
essence, this is the speedup against a zero-overhead sequential
version of the run, and is thus a much more conservative estimate
of speedup than speedup versus TWSIM’s run time. For the
32,000 creature run, the zero overhead speedup was 23.7 on 71
nodes. For comparison, the best zero overhead speedup for the 16-
by-16 2048 creature run was 15.9.

This improvement in performance is due to an increase in the
granularity of events. The more creatures in the simulation, the
more comparison between sharks and fish are likely to be made
per event. The granularity for the 2048 creature run was 3
milliseconds per event, while the granularity for the 32,000
creature run is 13 milliseconds, more than four times as great. At
the extreme, the granularity per event will totally dominate the
overhead per event, and the actual speedup for the simulation
would be the same as the zero overhead speedup. At this point,
parallelism and load balancing would be the only limitations on
speedup.

4. DEVELOPING SHARKS WORLD FOR TWOS

 The process of developing Sharks World for TWOS provided
results almost as interesting as the performance figures. The code
for Sharks World was written from scratch in two man weeks. No
code from other TWOS simulations was used, and almost all of the
algorithms were developed independently of other simulations.
The resulting code included the ability to fully configure the
Sharks World tests at run time, in terms of the number of sectors
in the world, the number of creatures, and even the individual
attack radii of the sharks. Initialization could be done by sending a
single message to each of the sectors.

Debugging was also very easy. Most of the problems encoun-
tered related to performance, not correctness. (In certain cases,

fixing these problems gave better run times, but poorer speedups.)
All of the tests reported on in section 3 were performed without a
single failure, except for runs that consumed too much memory to
complete.

The code for Sharks World comprises 1200 lines of C code,
including comments. It does not contain any code specific to Time
Warp style simulation, other than the data structures necessary to
link to TWOS. No code explicitly attempts to take advantage of
TWOS’s synchronization method, or even takes notice of it.

5. POSSIBLE IMPROVEMENTS

 Sharks World is a rather unrealistic simulation that has
several obvious possibilities for improvement. First, sharks never
change their directions to attack fish, and fish never take evasive
actions. The TWOS version of the code could easily have the
creatures change the direction and speed of their movements for
any of a variety of reasons. There is no evidence to suggest that
any major changes would be necessary to the simulation to add
this capability, nor that doing so would harm speedup. In fact,
since deciding when to change directions and speeds would require
extra calculations, leading to higher computational granularity per
event, this change might well improve speedup.

Sharks and fish have very simple behavior in the basic model.
If their behavior were more complex, they might have to be
modelled as independent objects, rather than simply being table
entries at sectors. Making this change would be more difficult
than handling speed changes, but TWOS already has run several
simulations that feature moving objects explicitly modelled, so it
could easily be done for Sharks World, as well.

Sharks and fish never reproduce in the basic model.
Assuming that they were not independently modelled, they could
do so very simply. New table entries for sharks and fish could be
made periodically, introducing new creatures to the world. Having
reproduction be driven by proximity of two creatures of the same
type would also be simple. If the creatures were independently
modelled as objects, TWOS’ dynamic object creation facility
would still allow reproduction.

The simulation could easily be generalized to include an entire
food chain of different types of creatures preying on each other.
The TWOS implementation could be easily altered to handle this
change.

The granularity per event could be artificially increased by
adding delay loops to the simulation. Doing so would permit
experiments to discover the inherent parallelism of the Sharks
World model, by increasing granularity to the point that the per-
event overhead was swamped by the granularity.

Sharks World has not been run with TWOS’ dynamic load
management facility turned on. Doing so would provide
potentially interesting results, particularly in the cases where there
were relatively few objects per node. For instance, figure 3 shows
a plateau in the speedup curve between 32 and 64 nodes where
some nodes host one object and some nodes host two. In this case,
load management would tend to move objects back and forth
throughout the simulation. The effect of this behavior on load
management might prove very interesting. In addition, load
management might provide slightly improved speedups for other
scenarios.

6. CONCLUSIONS

Sharks World proved to be a very simple application to code
for TWOS. It was coded and debugged in two man weeks, around

four weeks after it was first discussed. After the initial debugging
and tuning, it ran all tests without modifications.

Sharks World provides good performance under TWOS. It
has demonstrated speedups as high as 29.5, with efficiencies as
high as 63.75%. With sufficient numbers of sectors, TWOS
provides a smooth speedup curve. If the number of sectors is close
to the number of nodes, the speedup curve is likely to have a
plateau between the points of two objects per node and one object
per node. Sharks World does not have especially favorable event
granularity for TWOS, so it would probably provide even better
speedups with higher granularities.

Sharks World provides a test example for lazy cancellation
versus aggressive cancellation. Due to its nature, lazy cancellation
should do very well with Sharks World, and does indeed do better
than aggressive cancellation. However, despite massive numbers
of negative messages, aggressive cancellation provides acceptable
performance comparable to that of lazy cancellation.

Sharks World was not expected to be a particularly good
application for TWOS, but its performance has been more than
acceptable. The development effort demonstrates how quickly and
easily small simulations can be ported to TWOS. The resulting
implementation is very flexible and could be easily altered if the
model were changed, probably with little impact on performance.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Army Model Improvement
Program (AMIP) Management Office (AMMO), NASA contract
NAS7-918, Task Order RE-182, Amendment No. 239, ATZL-
CAN-DO.

The authors thank David Jefferson, Mike Di Loreto, Phil
Hontalas, Brian Beckman, Fred Wieland, Leo Blume, Joe Ruffles,
John Gieselman, Lawrence Hawley, and John Wedel, for their
work on TWOS, TWSIM, and TWOS applications. We also thank
Jack Tupman and Herb Younger for managerial support, and
Harry Jones of AMMO, and John Shepard and Phil Lauer of CAA
for sponsorship.

REFERENCES

Berry, O. (1986), “Performance Evaluation of the Time Warp
Distributed Simulation Mechanism,” Ph.D. dissertation,
Department of Computer Science, University of Southern
California, Los Angeles, CA.

Conklin, D., Cleary, J., and Unger, B. (1990), “The Sharks World
(A Study in Distributed Simulation Design),” In Proceedings
of the SCS Multiconference on Distributed Simulation, D.
Nichol, Ed. Society For Computer Simulation, San Diego,
CA, 157-160.

Ebling, M., Di Loreto, M., Presley, M., Wieland, F., and Jefferson,
D. (1989), “An Ant Foraging Model Implemented On the
Time Warp Operating System,” In Proceedings of the SCS
Multiconference on Distributed Simulation, Unger, B. and
Fujimoto, R., Eds., Society For Computer Simulation, San
Diego, CA, 21-28.

Hontalas, P. and Beckman, B. (1989), “Performance of the
Colliding Pucks Simulation On the Time Warp Operating
System (Part 2: A Detailed Analysis),” In Proceedings of the
1989 Summer Computer Simulation Conference, Clema, J.
Ed., Society For Computer Simulation, San Diego, CA, 91-
95.

Jefferson, D. (1985), “Virtual Time,” ACM Transactions on
Programming Languages and Systems 7, 3.

Jefferson, D., Beckman, B., Wieland, F., Blume, L., Di Loreto,
M., Hontalas, P., Laroche, P., Sturdevant, K., Tupman, J.,
Warren, V., Wedel, J., Younger, H., and Bellenot, S. (1987),
“Distributed Simulation and the Time Warp Operating
System,” ACM Operating Systems Review 21, 4, 77-93.

Presley, M., Ebling, M., Wieland, F., Jefferson, D. (1989),
“Benchmarking the Time Warp Operating System With a
Computer Network Simulation,” In Proceedings of the SCS
Multiconference on Distributed Simulation, Unger, B. and
Fujimoto, R., Eds., Society For Computer Simulation, San
Diego, CA, 8-13.

Wieland, F., Hawley, L., Feinberg, A., Di Loreto, M., Blume, L.,
Ruffles, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot, S.
(1989), “The Performance of a Distributed Combat
Simulation With the Time Warp Operating System,”
Concurrency: Practice and Experience 1, 1, 35-50.

