ATIMEWARPIMPLEMENTATION OF SHARKSWORLD

Matthew T. Presley
Peter L. Reiher

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91109

Steven Bellenot

Department of Mathematics
The Florida State University
Tallahassee, Florida 32306

ABSTRACT

This paperdiscusseshe TWOS implementationof the Sharks
World simulation, a simple simulation of sharks and fish
swimming througha toroidal world. It coversthe designof the
simulationand presentperformanceesultsfor it. SharksWorld
performsvery well under TWOS in a variety of configurations.
Also, the paper discusses the proagssriting the applicationand
changes and improvements that could be made to it.

1. INTRODUCTION

SharksWorld is a simulation of sharksand fish swimming
througha two-dimensionaltoroidal world. When a sharkand a
fish are within a certain distance,the shark will eat the fish,
causingthe fish to disappeafrom the simulation. Sharksandfish
do not interactin any otherway. Sharksmay swim througheach
other,asmay fish. Eachsharkor fish startswith an initial speed
anddirectionof movement. Neither changesat any time for any
fish or shark. Sharks and fish do not reproduce.

SharksWorld is not meantto be a realisticbiological simula-
tion. Rather,it is anextremelysimplebenchmarkdemonstrating
basic form of objectsinteracting at a distance[Conklin et al.
1990]. Sharks World has been implemented using several
different types of synchronization mechanismsfor parallel
simulation. This paperdescribesan implementationusing an op-
timistic synchronization method. It was written for the Tivarp
OperatingSystem,an optimistic paralleldiscreteeventsimulation
operating system dewaed at the Jet Propulsion Laborgt

The Time Warp Operating System (TWOS) is a special-
purposedistributedoperatingsysem whosegoalis to run discrete
event simulationson parallel hardwareas quickly as possible.
TWOS embodies the theoof virtual time, describedn [Jefferson
1985].

TWOS extracts parallelism (and hence, speedup)from a
distributed simulation by running the componentobjects of the
simuation simultaneouslyon different nodes of the parallel
processor. Simulation objects communicatevia timestamped
messages, and the arrival of @renoremessageat anobjectata
given simulation time causesan event at that object. TWOS
handlesall synchronizéion betweenthe nodesof the parallel
processorallowing the simuation designerto view the systemas
executingall eventsin stricttimestamporder. In actuality, TWOS
permits faster nodesto run aheadof slower nodesin simulation
time. If aneventprovesto have beemonebeforean earlierevent
thathasan effecton it, TWOS maintainssufficientinformationto
completelyroll back that erroneousevent and undo any of its
consequencesA morecompletedescriptionof the systemcanbe
found in [Jefferson et al. 1987].

TWOS has extracted high speedupsfrom many different
simuations, including theater-levemilitary simulations[Wieland
et al. 1989], computernetwork simulations[Presleyet al. 1989],
and biological simulations [Ebling et al. 1989]. One of the
fundamentalbenchmarksused by TWOS is a simulation called
Pucks [Hontalas and Beckman 1989]. Pucks simulates two-
dimensionalpucks moving and colliding on a frictionless table
with cushionedsides. This problemis similar to Sharksworld, as
both simulationsdealwith objectsmovingin spaceandinteracting
at a distance. Pucksand SharksWorld have some significant
differenceshowever,in the form of the playing surfaceandin the
rules of interaction.

This paperdescribesthe TWOS implementationof Sharks
World. It discusseghe archite¢ure of the simulation, presents
performancdiguresfor severaldifferent SharksWorld scenarios,

and examineswhy TWOS providesthe performancet does. It
alsodiscussesnethodsof improving TWOS’ performanceon this
application,andthe possibleeffectsof addingmore complexityto
the simulation.

2. SHARKSWORLD IN TWOS

The TWOS implementationof Sharks World divides the
toroidal world up into a varying numberof equally sizedsectors.
Theworld canbe split into anarbitrarynumberof sectorsandthe
horizontaland vertical dimensionsof a sectorneednot be equal.
Eachsectorhasresponsibilityfor actionshappeningn its areaof
space. These sectors are the only objects in the simul&lwarks
and fish are not explicitly modelled as objects.

Eachsectorhasresponsibilityfor keepingtrack of all sharks
andfish currentlywithin its boundaries.A sectoralsohasrespon-
sibility for notifying other sectorswhen one of its sharksor fish
entersthat other sector, or when a shark’s attack radius first
crosses the boundary of that other sector. Unlike the
implementationin [Conklin et al. 1990], there are no special
border regions within sectors.

Every sectormaintainstwo lists, oneof fish within the sector
and oneof sharksthat may kill fish within the sector. The shark
list containsnot only those sharksthat are currently within the
sector,but alsoall sharkswhoseattackradiuscurrentlyintersects
the sector. Theselatter are called visible sharks. The sector
determines when a fish or shark will leasaedwhich sectorit will
enter. The sectorthen sendsa messageo the next sectorthe
creaturewill enter,informing it when the creaturewill arrive, at
what point, and with what velocity and direction of movement.
Thatnextsectorwill in turn determinewherethe creatureis to go
next, and when, and send anothressagéeo thateffectto the next
sector to be entered.

The other activity in the model is sharkspreying on fish.
Sharkswill eat any fish within their attack radius. Since the
simuléion is not being run in time steps,and since sharksare
alwayshungryandtakeno time to eata fish, the issueof which of
two fishesin the attackradiuswill be eatendoesnot arise. If they
enterthe shark’sattackradiusat differenttimes, the sharkwill eat
both of themat their differing momentsof entry. In thevery rare
casesvheretwo fish enterthe radiusat exactlythe sameinstantin
simuléion time, the sharkwill eatboth of themat once. Eatinga
fish is not an eventin the simulation. Only crossing sector
boundariesand having a shark’s attack radius cross sector
boundaries are modelled as events.

When a fish enters a sector, the sector compares the fish’s data
to that of all sharksthe sectorknows about,both thosewithin the
sectorand thosevisible in other sectors. The sectordetermines
which shark,if any,will kill thefish. If nosharkwill kill thefish,
the sectordetermineswhich sectorthe fish will enter next, and
sendsa messagenotifying that sectorof the fishesarrival in the
simulationfuture. If thefish doesfall within the attackradiusof a
known shark, the fish is marked as being dgdd.messagés sent
to the next sector. However,the sectordoesnot yet discardits
information about the fish, as some other shark may enter the
sector later, yet get to the fish before the first shark.

Whena sharkbecomegisible to a sector the sectorcurrently
responsiblgfor that sharksendsa messageo the sectoraboutto
seethe shark. This messages similar to the fish arrival message.
It containsthe shark’s position at the simulation time when it
became visible, the shark’s speed, daadirectionof motion. The
sector

receivingthe messagechecksits list of fish to determinewhich
fish the sharkwill attack. Both live and deadfish are checked,
sincethis sharkmay getto a supposedlydeadfish beforethe shark
that appeardo haveeatenit. Any fish previouslylisted as alive
becomesdead. For all such fish, the sector performing this
computation sent a message to the next sectdistherasto enter.
That messagamust be cancelled,as deadfish don’t move any
more.

TWOS does not currently contain a messagecancellation
primitive, so cancellationof messageselatingto deceasedish is
donewithin the application. Sectorsmaintaininformation about
the fish entry messagethey havesentto othersectors. Shoulda
sharkentera sectorand eat a fish previously expectedto escape
the sector, this information will indicate that sooteersectorwas
erroneously informed of the fish’s arrival. That erroneous
messageas cancelledby sendinganothermessagedirecting the
receiverto ignorethefirst message .Note thatthis behavioris not
relatedin any way to Time Warp messagecancellation,and has
nothingto do with Time Warp rollback. Suchcancellationsare
equally necessaryn the sequentialversion of the simulation, as
they representexplicitly modelledguessesabout future behavior
and correction of those guesses as better information arrives.

Oncea sectorhasmarkeda fish asdead it knowsthatthefish
will definitely die. The only uncertaintyis which sharkwill eatit,
at which point, at what time. Therefore,the sector maintains
information aboutdeadfish until it is certainthatthe fish will not
be eaten by some other shark at some earlier simulation time.

A sector’slists of sharksandfish is garbagecollectedduring
eachevent. If the time of departureof the fish is beforethe time
of the currentevent,that entry canbe garbagecollected. Also, if
thetime at which the shark’sattackradiusno longerintersectshe
sector has passed,the shark’s entry can be garbagecollected.
Finally, if thetime at which a fish died is earlierthanthe time of
the current event, the fish’s entry can be garbage collected.

3. THE PERFORMANCE OF TWOS SHARKSWORLD

The TWOS implementationof SharksWorld achievesvery
good performance. It producesspeedup®f up to 29.5, often has
efficienciesof greaterthan 50%, and sometimesachievesup to
69% of the theoretically possible speedup,as determined by
critical path analysis. This section presentssome performance
results for TWOS Sharks World.

In the curves presented, two interpatametersf the simula-
tion arevaried. First, the total numberof creaturegpresentin the
world at the startof the simulationis variedfrom 32 to 2048. (In
each case, half of the creaturesare sharksand half are fish.)
Second, the decomposition of twerld into sectordgs varied. The
world is split into either 64 or 256 sectors. Sincesectorsare the
only objectsin the simulation,the numberof sectorsputsa firm
upper limit on the possibleparallelismof the simulation. For
instancea simulationof aworld split into 16 sectorscannotpossi-
ble improve its speedup on 16 nodes by adding modes. (Runs
were madefor 4-by-4 sectordecompositionsbut the parallelism
available in a simulation with only 16 objects is limited nsmeof
these curves are plotted here.)

The performanceaesultsshownherearefor runsof 2000time
units. Creaturesmove at speedsapproximatelybetween50 and
200 spaceunits per time unit. The world is 64K spaceunits on
eachside, so a typical creaturewould swim aroundthe toroidal
world 3 times during the run. Other SharksWorld studieshave
used simuations that ran 100,000 time units, but the limited
testing time avadble made it impossible to make sufficidwOS
runs at that length.

The configurationfiles usedto assignsectorsto nodesof the
parallel processomere not carefully balanced. Assignmentwas
round robin, ensuringthat no node receivedmore than 1 more
sectorthanany other. No attemptwas madeto ensurethat each
node performedaboutthe sameamountof work as its fellows.
Dynamic load management was not used for these runs.

The runswere madewith TWOS version2.4 runningon the
BBN GP1000underthe Mach operatingsystem. A few perfor-
mancefiguresarealsoincludedfor the samemachinerunningthe
Chrysalis Operating System.

The performancefigures presentedare speedupsagainstthe
run time of TWSIM 2.4. TWSIM is a fast sequentialsimulator
thatrunson onenodeof the samehardwareasthe TWOS runs. It
usesa splay-treeto implementa single eventlist, and has been
extensively optimized for speed. It uses strictly sequential
methods,with no rollbacksor antimessagesand no parallelism.
TWSIM has the same user interfaa€l WOS, so exactlythe same
userapplicationis run underboth systems. TWOS speedupsre
found by dividing the TWSIM time for an application by the
TWOS time. In all cases, each point plottethesaverageof three
separate runs using the identical configuration.

No runs with more than 2048 creaturesare shown here.
TWOS hashandledSharksWorld runswith 32,000creaturesput
TWSIM cannot handleanany more than 2048 creatureswith the
current implementation of Sharks World, so good speedup
numbers are not possible for larger numbers of creatures.

Figurel showsthe speedupf WOS achievedor runswith the
world dividedinto an 8-by-8 grid of sectors. The different curves
showthe speedupsichievedfor numbersof creaturedetween32
and 2048. As the numberof creaturesincreasesthe average
amountof work necessaryo detectfish within the attackradii of
sharks increases,increasing granularity. As expected, TWOS
provides increasingly better speedupsas the granularity of the
computationincreases.The bestspeedupsrefor 2048 creatures,
the case with the highest granularity.

25+
201
151

104

T CODODODO W

Nodes

32 464 ®]?28 X256 £~&512
<1024 1+ 2048

Figure 1. 8X8 Sector Sharks World Speedup

Figure 1 also demonstrateshe importanceof configuration
andload balancing. For large numbersof creaturesthe speedup
curvesshow plateausbetween32 and 64 nodes,with little or no
perfomanceimprovementat 40, 48,or 56 nodes. The reasonfor
this phenomenon is that tleatiresimulationconsistof 64 objects
(one per sector), each of which does approximatelythe same
amountof work. Thus,configurationsthat haveexactlythe same
number of objects on each nodes are better balaroggirticular,

whenthe numberof nodesexceeds32, somenodeshaveonly one
object, while other nodeshave2. The speedugor theserunsis
limited by the speed of the nodes hosting two objects, jusias
for 32 nodes. At 64 nodes,eachnode has exactly one object,
allowing a substantial increase in speedup.

8-by-8 sectorruns were not madefor more than 64 nodes.
Sincethe simulationonly contains64 objects,usingmorethan 64
nodes would never improve speedups.

The speedupsobtained for the 8-by-8 sector runs ranged
between.63 (a slowdown)for 1024 creatureson 2 nodesto 25.5
for 2048 creatureon 64nodes. The bestspeedupobtainedfor a
32 creaturerun was 2.75 on 20nodes, indicating how little
speedups availablefor that simulation. Efficiencies(definedas
the speedugivided by the numberof nodes)rangedfrom 4% (32
creatureon 64nodes)to 60% (2048 creatureon 8 nodes). The
efficiency for the best speedup was 40%.

Figure 2 showsthe samecurvesfor a division of the world
into 16-by-16sectorspor 256 total objects. Pointsare shownonly
for 512, 1024, and 2048 creaturesas thosesimulationsprovided
the best speedups. The maximum speedupsobtained by this
versionof SharksWorld was24.45,lower thanthe maximumfor
the 8-by-8version. More interesting though,is thatthe 16-by-16
sectorruns do not show the plateausthat the 8-by-8 sectorruns
showed. Sincetherearemoreobjectsin the 16-by-16sectorruns,
TWOSis ableto betterbalancetherunsare48 or 56 nodes. If we
were able to run on 192 nodes, the plateau would probably
reappearrunningno fasterthan128 nodeswith a big gain at 256
nodes, as each object got its own node.

25.00
20.00+
15.00¢
10.00+
5.00 ¢
0.00 +£

T CODDODO W

Nodes

& 512 <1024 © 2048

Figure 2. 16-by-16 Sector Sharks World Speedup

The 16-by-16sectorruns probablydo not achieveas high a
speedupas the corresponding8-by-8 sector runs for 1024 and
2048 creaturedbecauseheir granularity of computationis lower.
The samenumberof creaturesare presentfor both casesandthey
swim to the same places, so each sector has fewer creatures to keep
track of. Much of the granularityof SharksWorld eventscomes
from comparinglists of sharksandfish to checkfor intersections,
so fewer entriesin eachsector’slist meanslesswork per sector,
leadingto a higherratio of overheado userwork, andhenceless
speedup. The granularity of the 8-by-8 sector simulation with
2048creaturess around7 millisecondsper event. For the 16-by-
16 sector2048creatureruns, the granularityis 3 millisecondsper
event. (TWOS actuallygivesbetterspeedup$or mostsimulations
with granularities around 10 or 15 milliseconds per event.)

The 16-by-16sectordecompositiorof 512 creaturerunsactu-
ally providesbetterspeedupshanthe 8-by-8 sectordecomposition

for all numbersof nodes except 2 nodes. Since the same
granularityargumentapplieshere,the differenceis probablydue
to superiorload balancingby the 16-by-16 sectordecomposition
for 512 cretures.

Figure 3 showssomeresultsfor runs madeon the Chrysalis
Operating System. Both Mach and Chrysalisrun on the same
hardware,so the differencesare wholly due to software, mostly
belowthelevel of TWOS. Chrysalisis a lesscapablesystem but
is alsosmallerandlessintrusive. Figure3 showsthe two speedup
curvesfor 8-by-8 sector2048 creatureruns underboth Chrysalis
and Mach. Thereis little difference,exceptthat the Chrysalis
speedugdor 64 nodesis a bit higher. This is dueto certainMach
initialization overheadshatoccurfor high numbersof nodes. The
phenomenons lessapparentat lower numbersof nodesbecause
the overheaddependson the numberof nodes,and becausehe
longerrun times of the low numberof nodestendto concealthe
initialization overhead.

30
25 1
20 {
15 +

10 +

T COoODODOTO W

0 8 16 24 32 40 48 56 64
Nodes

< Mach &+ Chrysalis

Figure 3. 8-by-8 Sector 2048 Creature Speedups

Figure 4 showsthe 16-by-16 sector2048 creaturespeedups
for both Mach and Chrysalis. Here, the Chrysalisimprovement
become<learmuchsoonerasthe load balancingproblemcaused
by the smallnumberof objectsin the 8-by-8 sectorrunsdoesnot
obscureit. Starting around 40 nodes,the Chrysalisversion of
TWOS getsmuch better speedupthan the Mach version. At 64
nodes, the Chrysalis version of this run got the best speedup
obtained from any Sharks World run under TWOS, 29.5.

30.00 +

25.00 +

20.00 +

15.00 +

10.00 {

T COoODODOTO W

5.00 ¢

0.00

0 8 16 24 32 40 48 56 64
Nodes

< Mach & Chrysalis

Figure 4. 16-by-16 Sector 2048 Creature Speedups

TWOS normally runs with lazy cancellationof messages
[Berry 1986]. SharksWorld is anapplicationthatshouldgetgreat
benefit from lazy cancellation of messages,since the only
messagesver cancelledin SharksWorlds runs are those sent
whenfish expectedo crossa sectorboundarylater proveto have
beeneaten. As [Reiheret al 1990] showed different applications
can perform well or poorly with either lazy cancellation or
aggressive cancellation. Figure 5 shows Sharks World’s
performancewith lazy cancellationvs. aggressivecancellation.
(TWOS contains a switch permitting it to run in either mode.)

30 ¢
251
20 1
15 |

10 +

T CODODODO W

0 8 16 24 32 40 48 56 64
Nodes

< Lazy O Aggressive

Figure5. Lazy Versus Aggressive Cancellation Speedups

Figure 5 demonstrates that lazy cancellation hdsaradvan-
tageoveraggressiveancellationfor SharksWorld, particularly at
large numbersof nodes. (The lazy cancellationspeedugs better
thanthe aggressiveancellatiorspeedugor all pointsbut one. At
16 nodes, aggressivecancellation’s speedupis insignificantly
better.) Somewhat surprisingly, though, lazy cancellatomt all
thatmuchbetter. At most, it is around25% fasterthanaggressive
cancellation. But the aggressivecancellationrun performs far

moremessageancellationghanthe lazy cancellatiorrun does,by
ashigh afactoras838. SharksWorld thusdemonstrateanactual
applicdion for which lazy cancellationis really better. Also, it
demorstratesthat negativemessagesnd rollbacks may not have
disastrouseffectson a simulation’sperformance. Despitesending
as many as 76,000 negative messages,TWOS still provided
reasonablegerformance. Clearly, most of the negativemessage
activity took place off the critical path of computation,thereby
impedingthe importantcomputationvery little. This resultserves
as further evidence of the practicalityagtimistic synchronization
methods.

TWSIM can determine theritical pathlengthof a simulation,
wherecritical pathlengthis definedasthe longestsetof eventrun
times that mushbe processedequentially. Critical pathlengthsets
a theoreticallimit on the speedupobtainableby a simulation.
(TWOS is able to exceedcritical path speedupunder certain
conditions [Berry 1986], but does not do so for typical
applications.) For a 4-by-4 sectorsimulationwith 2048 creatures,
TWOS on 16 nodeswas ableto achievebetterthan 69% of the
critical path speedup.

TWSIM is unableto handlerunsof Sharksworld with many
more than 2048 creaturesmaking it impossibleto get a proper
speedugigure for suchruns. However,a TWOS run with 32,000
creaturesvas madesuccessfully. While normal speedupfigures
are unavailable, some speedup comparisons can be mhaaun
was made 16-by-16 sectors,out to 2000 time units. One of the
statistics produced was total committed event time. Total
committed event time is constant between TWOS runs and
TWSIM runs, by definition, as it is the sum of all time spent
running committed eventsin TWOS. Since TWSIM runs only
committed events, its event time should be the same.

One measureof speedupis zero overheadspeedup. In
essencethis is the speedupagainsta zero-overheadsequential
versionof the run, andis thusa muchmore conservativesstimate
of speedupthan speedupversus TWSIM’'s run time. For the
32,000creaturerun, the zero overheadspeedupwas 23.7 on71
nodes. For comparison, the best zero overhead speedup G-
by-16 2048 creature run was 15.9.

Thisimprovementn performanceas dueto anincreasen the
granularity of events. The more creaturesn the simulation, the
more comparisonbetweensharksand fish are likely to be made
per event. The granularity for the 2048 creaturerun was 3
milliseconds per event, while the granularity for the 32,000
creaturerun is 13 milliseconds,morethanfour timesasgreat. At
the extreme,the granularity per eventwill totally dominatethe
overheadper event, and the actual speedupfor the simulation
would be the sameas the zero overheadspeedup. At this point,
parallelismand load balanéng would be the only limitations on
speedup.

4. DEVELOPING SHARKSWORLD FOR TWOS

The processf developingSharksWorld for TWOS provided
resultsalmostasinterestingasthe performancdigures. The code
for SharksWorld waswritten from scratchin two manweeks. No
code from other TWOS simulations was used, and almost gieof
algorithms were developedindependentlyof other simulations.
The resulting code included the ability to fully configure the
SharksWorld testsat run time, in termsof the numberof sectors
in the world, the numberof creatures,and even the individual
attack radii of the sharks. Initialization could be donedydinga
single message to each of the sectors.

Debugging was also vesasy. Most of the problemsencoun-
teredrelatedto performancenot correctness. (In certain cases,

fixing theseproblemsgavebetterrun times,but poorerspeedups.)
All of the testsreportedon in section3 were performedwithout a
singlefailure, exceptfor runsthatconsumedoo muchmemoryto
complete.

The codefor SharksWorld comprises1200lines of C code,
including comments. It does not contain any code specifione
Warp style simulation,otherthan the datastructuresnecessaryo
link to TWOS. No codeexplicitly attemptsto take advantageof
TWOS's synchronization method, or even takes notice of it.

5. POSSIBLE IMPROVEMENTS

Sharks World is a rather unrealistic simulation that has
severalobviouspossibilitiesfor improvement. First, sharksnever
changetheir directionsto attackfish, andfish nevertake evasive
actions. The TWOS version of the code could easily have the
creatureschangethe direction and speedof their movementsfor
any of a variety of reasons. Thereis no evidenceto suggesthat
any major changeswould be necessaryo the simulationto add
this capability, nor that doing so would harm speedup. In fact,
since deciding when to change directions sipeledsvould require
extracalculaions, leadingto highercomputationagranularityper
event, this change might well improve speedup.

Sharksandfish havevery simplebehaviorin the basicmodel.
If their behavior were more complex, theymight have to be
modelled as independenbbjects, rather than simply being table
entriesat sectors. Making this changewould be more difficult
than handlingspeedchangesput TWOS alreadyhasrun several
simulaions that featuremoving objectsexplicitly modelled,so it
could easily be done for Sharks World, as well.

Sharks and fish never reproduce in the basic model.
Assumingthat they were not independentlynodelled,they could
do sovery simply. New tableentriesfor sharksandfish could be
made periottally, introducing new creatures to the worldaving
reproductionbe driven by proximity of two creaturesof the same
type would also be simple. If the creatureswere independently
modelled as objects, TWOS’ dynamic object creation facility
would still allow reproduton.

The simulation could easily be generalized to includerdime
food chain of different typesof creaturegreying on eachother.
The TWOS implementationcould be easily alteredto handlethis
change.

The granularity per event could be artificially increasedby
adding delay loops to the simulation. Doing so would permit
experments to discoverthe inherent parallelism of the Shaks
World model, by increasinggranularityto the point that the per-
event ovelnead was swamped by the granularity.

SharksWorld has not beenrun with TWOS’ dynamicload
managementfacility turned on. Doing so would provide
potentiallyinterestingresults,particularlyin the casesvherethere
wererelatively few objectspernode. Forinstancefigure 3 shows
a plateauin the speedupcurve between32 and 64 nodeswhere
some nodes host one object and soodeshosttwo. In this case,
load managementvould tend to move objects back and forth
throughoutthe simulation. The effect of this behavioron load
managementmight prove very interesting. In addition, load
managemeninight provide slightly improved speedupsor other
scenarios.

6. CONCLUSIONS

SharksWorld provedto be a very simple applicationto code
for TWOS. It wascodedanddebuggedn two manweeks,around

four weeksafterit wasfirst discussed.After theinitial debugging
and tuning, it ran all tests without modifications.

SharksWorld providesgood performanceunder TWOS. It
has demonstratedpeedupsas high as 29.5, with efficienciesas
high as 63.75%. With sufficient numbersof sectors, TWOS
provides a smooth speedup curve. If the numbeeatorss close
to the numberof nodes,the speedupcurve is likely to have a
plateaubetweerthe pointsof two objectsper nodeand oneobject
pernode. SharksWorld doesnot haveespeciallyfavorableevent
granularityfor TWOS, so it would probably provide evenbetter
speedups with higher granularities.

SharksWorld providesa test examplefor lazy cancellation
versusaggressiveancellation. Dueto its nature,lazy cancellation
shoulddo very well with Sharksworld, anddoesindeeddo better
than aggressivecancellation. However,despitemassivenumbers
of negativemessagesaggressiveeancellationprovidesacceptable
performance comparable to that of lazy cancellation.

SharksWorld was not expectedto be a particularly good
application for TWOS, but its performancehas beenmore than
accepable. The development effatemonstratebow quickly and
easily small simulationscan be portedto TWOS. The resulting
implemenation is very flexible and could be easily alteredif the
model were changed, probably with little impact on performance.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Army Model Improvement
Program(AMIP) ManagemenOffice (AMMO), NASA contract
NAS7-918, Task Order RE-182, AmendmentNo. 239, ATZL-
CAN-DO.

The authors thank David Jefferson, Mike Di Loreto, Phil
Hontalas Brian Beckman FredWieland,Leo Blume, JoeRuffles,
John Gieselman LawrenceHawley, and John Wedel, for their
work on TWOS, TWSIM, and TWOS applicationg/e alsothank
Jack Tupman and Herb Younger for managerialsupport, and
Harry Jonesof AMMO, andJohnSheparcandPhil Lauerof CAA
for sponsorship.

REFERENCES

Berry, O. (1986), “PerformanceEvaluation of the Time Warp
Distributed Simulation Mechanisni, Ph.D. dissertation,
Departmentof Computer Science, University of Southern
California, Los Angeles, CA.

Conklin,D., Cleary,J.,andUnger,B. (1990),“The SharksWorld
(A Studyin Distributed SimulationDesign); In Proceedings
of the SCS Multiconferenceon Distributed Simulation, D.
Nichol, Ed. Society For Computer Simulation, San Diego,
CA, 157-160.

Ebling, M., Di Loreto, M., Presley, M., Wieland, lendJefferson,
D. (1989), “An Ant Foraging Model ImplementedOn the
Time Warp OperatingSystem, In Proceedings of the SCS
Multiconference on Distributed Smulation, Unger, B. and
Fujimoto, R., Eds., Society For Computer Simulation, San
Diego, CA, 21-28.

Hontalas, P. and Beckman, B. (1989), “Performanceof the
Colliding Pucks Simulation On the Time Warp Operating
System(Part2: A DetailedAnalysis); In Proceedings of the
1989 Summer Computer Smulation Conference, Clema, J.
Ed., Society For ComputerSimulation, San Diego, CA, 91-
95.

Jefferson,D. (1985), “Virtual Time;” ACM Transactions on
Programming Languages and Systems 7, 3.

Jefferson,D., Beckman,B., Wieland, F., Blume, L., Di Loreto,
M., Hontalas,P., Laroche,P., Sturdevant,K., Tupman,J.,
Warren,V., Wedel,J., Younger,H., andBellenot, S. (1987),
“Distributed Simulation and the Time Warp Operating
System’; ACM Operating Systems Review 21, 4, 77-93.

Presley, M., Ebling, M., Wieland, F., Jefferson, D. (1989),
“Benchmarkingthe Time Warp Operating System With a
ComputerNetwork Simulation; In Proceedingf the SCS
Multiconferenceon Distributed Simulation, Unger, B. and
Fujimoto, R., Eds., Society For Computer Simulation, San
Diego, CA, 8-13.

Wieland,F., Hawley, L., Feinberg,A., Di Loreto, M., Blume, L.,
Ruffles,J.,Reiher,P.,BeckmanB., HontalasP., Bellenot,S.
(1989), “The Performance of a Distributed Combat
Simulation With the Time Warp Operating Systent,
Concurrency: Practice and Experience 1, 1, 35-50.

