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Abstract

The Time Warp Operating System (TWOS) runs discrete event simulations on

parallel hardware using an optimistic synchronization method based on rollback

and message cancellation.  Developing this system caused many difficult

debugging problems, both because of its unique method of operation and

general problems of developing a distributed system.  This paper describes some

of the techniques used to debug TWOS.  These techniques include debuggers

built into the operating system, logging methods, graphical tools, internal

statistics, special-purpose applications, and monitors.  In addition, TWOS has an

important property that aids in debugging – simulations run under TWOS must

produce deterministic results from run to run.   The paper discusses how this

property proved useful for debugging both TWOS and the applications run on

it.

1. Introduction

The Time Warp Operating System (TWOS) is a special purpose operating system

designed to run discrete event simulations in parallel with the primary goal of

maximum speedup.  (TWOS runs simulations; it is not itself a simulation, but a

genuine operating system.)  It uses an unusual synchronization mechanism

based on the theory of virtual time.  Every event in the simulation is assigned a

virtual time by the user, and TWOS guarantees that the resulting parallel

execution will produce results identical to running every event in increasing

virtual time order.  TWOS actually runs events at many different virtual times in

parallel, to provide good speedup.  Instead of using a conservative method to



determine precisely which events can safely be run in parallel without

compromising the sequentiality constraint, however, TWOS permits each node

of a parallel machine to run the earliest event it has.  As a result, some events

may be performed out of order, in which case TWOS must roll back the

misordered computation and cancel any of its effects, before going on to process

events in the correct order.

Even this brief description of TWOS makes clear that such a system will have

substantial debugging problems.  Not only is TWOS an operating system, and a

distributed operating system, but any action it takes on behalf of the user may

turn out to be erroneous and need to be automatically corrected by the system.

In completed, correct runs, only correct actions were taken, but when bugs are

present during a run, a person debugging TWOS is faced with a mixture of

correct information and incorrect information, with no easy way to distinguish

them.

At its inception, the TWOS project had no access to any existing parallel or

distributed debugging tools.  Such tools did not really exist outside some

laboratories, at the time, and certainly did not exist for the experimental

hardware used by the project.  Nonetheless, little thought was given, at the

outset, to the type of debugging support necessary to complete the project.  As a

result, tools had to be developed as the need arose, rather than in parallel with

the systems development.

Despite its novel aspects, the most fundamental principle used in debugging

TWOS is familiar to all:  get as much information as possible about the problem.

Most of the tools discussed in this paper are meant to do exactly that.  They offer

windows into the behavior of the operating system and the application that

allow the debugger to examine as much of the available data as possible.  Some

of them also allow the debugger to summarize vast quantities of data into a

graphical form that is easier to understand.  Typically, this data cannot be

directly scanned in any other useful way, because of its volume.

One aspect of TWOS debugging is quite unusual, however.  Despite presenting

an asynchronous synchronization model to its users, TWOS is committed to

producing deterministic results.  While this goal may sound contradictory with

the synchronization method used by TWOS, it actually meshes quite well.



TWOS’ synchronization method will always guarantee the appearance of a given

application’s events being processed in exactly one order.  With more

appropriate hardware and compilers, TWOS’ synchronization mechanism would

guarantee this ordering without any user intervention.  Currently, following

certain simple rules when writing the application guarantees that TWOS will

always produce exactly the same results from one run to the next.  For instance,

users are restricted in certain ways in using pointer values.

Determinism has an important implication for debugging.  Deterministic

programs will always demonstrate the same problems on every run,

substantially simplifying the problem of tracking down the error. Moreover, any

non-repeatable error is a sure signal of a bug in the operating system itself,

assuming that the application does follow the rules.

This paper does not intend to present new debugging methods or an integrated

approach to debugging for parallel systems.  Rather, it is a case study showing

how some difficult debugging challenges were met and suggesting some general

guidelines for approaching the debugging of complex parallel or distributed

systems.  [Cheung 90] describes a more general framework for debugging

distributed programs.  [Lehr 89] and [Socha 88] describe two actual integrated

debugging systems for distributed programs.

2. The Time Warp Operating System

A simulation to be run on TWOS must be decomposed into objects, which run

events and send timestamped messages to other objects.  (TWOS objects are

similar to processes in most operating systems, and can be read as synonymous

with “process”.)  The timestamp on a message is the simulation time at which it

is to arrive at its destination object.  The arrival of a message at an object causes

that object to execute an event at the simulation arrival time.  Objects

communicate with one another solely by passing messages, with no shared

memory whatsoever.  Any object may send a message to any other object at any

time, without needing to set up any kind of channel between the two objects.

Except for initialization and termination code, all user code runs as part of an

event.

TWOS runs one simulation at a time, with the goal of completing that simulation

as quickly as possible.  Each node of the parallel processor hosts several objects,



scheduling them independently of all other nodes.  The TWOS scheduler always

chooses the local object with an unprocessed message at the earliest simulation

time to run next.  Objects are only pre-empted when another object receives a

message at an earlier time than that of the event currently running.

Since each processor schedules without waiting for, or consulting with, other

processors, at any given instant of real time the system’s processors may be

working at a wide range of simulation times.  An object running at a low

simulation time can send a message to another object at a higher simulation time.

If the message is scheduled to arrive at a simulation time earlier than the

receiving object is currently handling, the receiver must roll back his computation

to the time of the newly arrived message.  Any erroneous work done by the out-

of-order computation must be totally undone.  Undoing the erroneous work

requires throwing away local results and sending message cancellations to other

objects.  TWOS is able to correctly undo any work done prematurely, along with

any side effects it may have had.  Rollback and message cancellation are totally

transparent to the application program.

Every object has a set of private variables called its state, which cannot be

directly examined by any other object.  Every event causes the creation of a new

version of the state, timestamped with the simulation time of the event.  TWOS

typically keeps multiple copies of each object’s state in order to support rollback.

At any given moment in a TWOS run, the simulation’s objects have performed

some work correctly, and some work in error.  TWOS periodically calculates the

earliest simulation time that could still be in error.  Any work done for

simulation times earlier than that time will never be rolled back, and can be

committed.  Both events and messages can be committed.  A committed message is

one that would have been sent in the sequential run of the program, and a

committed event is one that would have been performed in the sequential run of

the program. In essence, these committed actions represent the correct path of

computation for a simulation.  To meet its definition of correct behavior, any

event or message TWOS commits must exactly correspond to an event or

message that would be committed in a sequential run of the same simulation,

and every message or event in a sequential run of the simulation must be

matched by a message or event in the committed trace of the parallel run.



Committing a message means that that message buffer can be freed.

Committing an event means that the associated state can be discarded.

TWOS periodically runs a calculation to determine which messages and events

can be considered committed.  Essentially, anything earlier than the earliest

unprocessed event will never be rolled back.  The simulation time of that earliest

unprocessed event is called global virtual time, or GVT.  TWOS calculates a

conservative estimate of GVT so that it can free storage used by committed

messages and events that need no longer be saved.

The TWOS project has developed a sequential simulator called TWSIM that runs

exactly the same simulations as TWOS. TWSIM is a conventional event list

simulation engine designed to support application prototyping and provide

single processor performance figures.  TWSIM is a primary tool for debugging

new applications.  Since TWOS is committed to producing deterministic results

precisely the same as those of TWSIM, any application bug present in a TWSIM

run would also cause a problem under TWOS.  Users can thus do much

debugging sequentially, which is substantially easier.  TWSIM uses a central

event queue implemented as a splay tree, and has been extensively optimized

for speed.  It runs on one processor of the same hardware as TWOS itself.  The

sequential simulator never does work optimistically, and never needs to roll

back any work it has done.

Since user code will sometimes execute optimistically down incorrect paths,

TWOS must be prepared to handle all kinds of errors.  User code that would

operate correctly if given the proper message sequence (as it would get under

TWSIM) can often fail when given misordered messages. If TWOS were

completely and correctly implemented, it would be able to handle any such

problems, including addressing exceptions, floating point exceptions, division

by zero, and even infinite loops.    Events causing such problems would be

marked as erroneous.  If they were rolled back, the error would be ignored.  If

they were committed, then the user has written genuinely erroneous code that

will fail either sequentially or in parallel, and TWOS would flag the error.

TWOS is not yet complete, so it does not always deal with exceptions properly.

Certain user errors are already caught and marked, demonstrating that the basic

method of handling these problems works.



Experience with TWOS has shown that optimistic execution can provide

excellent speedup of discrete event simulation, despite fairly frequent rollbacks.

TWOS has achieved speedups in excess of 40 times the speed of the same

simulation performed by TWSIM [Hontalas 89].

This description of TWOS is necessarily brief, and does not cover the theory of

virtual time that underlies its operation [Jefferson 85], nor many important and

interesting details of its implementation [Jefferson 87].  Several other

implementations of virtual time synchronized distributed simulation systems

also exist, and methods of performing distributed simulations in totally different

ways have been developed [Fujimoto 90].

TWOS has been under development at the Jet Propulsion Laboratory since 1983.

It has been a complete, functional system since 1986.  TWOS has run on a variety

of parallel and distributed architectures, including the Caltech/JPL Mark 2

Hypercube, the Caltech/JPL Mark 3 Hypercube, the BBN Butterfly GP1000, and

networks of Sun3 and Sun4 workstations connected by an Ethernet.

3.  Debugging and Determinism

The value of providing deterministic results for debugging parallel and

distributed systems is widely recognized [Socha 88], [Lin 88].  However,

providing determinism for all runs (not just debugging replays) on a system

supporting an asynchronous model of user communications is not easy [Emrath

88].  None the less, TWOS must provide deterministic results to its users on all

runs [Reiher 90a], which gives the added benefit that the presence of non-

deterministic results is a sure sign of an error.  Many errors in both TWOS itself

and its simulations have been discovered through non-deterministic results.

Some of these errors have been related purely to deterministic concerns, such as

the method of ordering messages.  Others, however, have been fundamental

errors like losing messages, failing to roll back properly, or improper

scheduling.  The failure of TWOS’ determinism brought these errors to light

much more quickly than if we had not demanded deterministic results from the

mechanism.

Some of the tools used in debugging TWOS itself rely on determinism, such as

the event log tool discussed in section 4.5.  These tools work on the assumption

that the committed results of one correct run of the simulation much match those



of another.  By comparing certain portions of the results of two simulation runs

that should match, but do not, problems can often be pinpointed.

Perhaps the greatest debugging benefit of TWOS’ commitment to determinism

for application debugging is that any error occurring in a simulation will

continue to occur on every run.  As a result, users can be certain that errors will

not suddenly pop up, only to disappear when the run is repeated to try to isolate

the problem.  An error in user code will persist across all TWOS runs.

Also worth noting is that the guarantee of determinism implies that user code

need never be concerned with issues of timing.  Despite any timing variability,

TWOS must produce deterministic results, therefore users need not worry about

timing.  If timing considerations actually cause non-determinism, that is a bug in

TWOS and must be corrected.

Of course, TWOS only provides deterministic results for the simulation running

on top of the system.  TWOS itself does not run deterministically.  Therefore,

determinism-based tools cannot be used for many debugging problems under

TWOS, and problems in TWOS itself may not recur when the system is rerun.  In

essence, TWOS takes on itself the burden of converting an inherently non-

deterministic system into a deterministic one.

Non-deterministic results can signal a problem in TWOS itself.  If the user has

followed certain rules (which are required because the TWOS implementation

does not trap all illegal user actions), his simulation should produce

deterministic results.  So, if those rules are followed, non-determinism signals an

error in TWOS.  Unfortunately, such errors usually will not recur

deterministically, but at least the user has an indication that the error is present,

and perhaps some clues about its source.

4.  Debugging Methods For TWOS

The first parallel version of TWOS was developed on experimental hardware,

the Caltech/JPL Mark II Hypercube.  Because this hardware was so new, the

associated software was not yet mature.  In particular, the debugging facilities

were primitive.  So, from the very first, TWOS needed to deal with debugging

problems without much assistance from existing software.  As the hardware

platforms used for TWOS have matured, their debugging tools have improved,



but they are still not sufficient.  In some ways, the early lack of good debugging

software proved helpful, as it required the development of custom debugging

software specific to the TWOS system, rather than relying on general purpose

software that did not know anything about the ways TWOS operated.

4.1  TWOS Statistics

One of the most important decisions made early in the TWOS project was to

keep careful statistics on all operating system actions.  Given that TWOS would

roll back and discard work on a routine basis when operating correctly, only by

keeping very careful track of what the system was doing could we hope to

determine if it was operating correctly.  Therefore, TWOS was designed to

tabulate all actions it took.  In particular, redundant statistics were chosen to

allow independent crosschecks of correctness.

As a simple example, TWOS counts all messages sent by objects, and all

messages received by objects.  Since messages are not permitted to be cancelled

in transit, any message sent must be received, so these two statistics must be

equal at the end of a run.  Similarly, separate counts are kept of the number of

committed messages sent and received.  These counts are different than the

simple counts of messages sent and received, since TWOS cancels some

messages.  Again, the count of committed messages sent must match the count of

committed messages received or an error has occurred.  Perhaps a message

cancellation failed, for instance.  TWOS keeps many other redundant statistics

for these purposes.

The statistics can be used to keep track of more complicated interactions.  TWOS

cancels messages by sending negative copies of those messages.  When a

negative and positive copy of the same message are in the same queue, they

annihilate.  TWOS keeps count of negative messages sent and received

separately from positive messages.  Every message sent must either be

committed or cancelled.  Therefore, subtracting the number of messages

cancelled from the number of messages sent should yield the number of

messages committed.

After completion of a run, all of these statistics are written out on a per-object

basis.  A tool called check is then used to make sure that all statistics balance

correctly.  If they do not, the failed balances are brought to the user’s attention.



This process has been of great value in detecting errors that do not cause crashes

in the TWOS code.  Often, a bug will give no visible signs of occurrence, except

that it will cause a cancellation to be missed, or an extra copy of a message to be

sent.  Even looking at the user-level results of the run might not uncover any

error, as the user usually does not know what results his simulation is supposed

to produce, and the error might not actually show up in his results even if he did

know what to expect.  However, some other application might fail due to the

same problem.  Without the availability of these TWOS statistics, such a problem

might not be discovered.

The code that calculates statistics must be written very carefully.  Since balancing

these statistics validates the run, any error in counting statistics can falsely

indicate a problem.  More than once, what appeared to be an execution error

actually has turned out to be an error in calculating statistics.  Not only the

TWOS statistics code itself must be handled carefully, but also the check

program.  If changes to TWOS change the balancing equations used to test

correctness, the check program must also be changed.  For instance, initially

states were only produced by events, so the number of committed states and the

number of committed events would always balance.  However, once dynamic

creation of objects was permitted, that action also produced a state, so the

number of committed dynamic creations had to be added to the number of

committed events to balance with committed states.

The overhead of gathering these statistics is quite low, compared to what each

statistic counts.  In general, adding to a statistic takes a few assembly language

instructions, while the action being counted might take milliseconds.  The

amount of storage consumed by statistics gathering is also relatively modest,

totalling perhaps 75,000 bytes in a typical run.  Given that such a run will

normally consume at least 3-4Mbytes, the statistics are not a major component in

the storage requirements.

These statistics have uncovered many bugs.  For example,  TWOS contains a

defined data type called “Int”, not necessarily the same as the standard C data

type “int”.  A variable that should have been declared as an “int” was changed

to an “Int”, resulting in its length being changed from 32 bits to 16 bits on one of

the machines being used at the time.  But the variable was being used to store

the return value of a function that returned a “Long” (32 bits).  Only rarely did



this bug cause problems in the applications we used for testing.  The only cases

where the bug showed up resulted in sending duplicate messages for

initialization purposes, resulting only in a single  object’s state being identically

initialized twice.  The user would have seen no difference in his program’s

results, but the count of committed messages was off by two, detecting this error

before it had actually corrupted a user’s program.

4.2  The TWOS Tester

TWOS contains a facility called the tester that is essentially an internal

debugger.  When certain errors occur, TWOS traps to the tester.  While in the

tester, the programmer can look at a wide variety of internal data structures.

For instance, the programmer can print the scheduler queue on each node; the

input, output, and state queues for each object; the object control block for any

object; structures related to the locations of objects; the virtual times each node is

operating at; and many other interesting pieces of information.

In essence, the tester gives some of the same functionality of a normal

debugger.  But it is both more and less than a normal debugger.  The tester

does not have the capability to print the contents of any variable in the TWOS

code, for instance, and it has only limited breakpointing facilities.  On the other

hand, unlike a standard debugger, it understands TWOS data structures.  The

tester knows what a scheduler queue looks like, so it need not print out one

entry at a time, forcing the programmer to follow pointers.  It knows which

fields of a data structure are likely to be needed and which need not be shown.

It can use some of the TWOS facilities for locating objects to help a user find the

node hosting a particular object.

The tester is the primary debugging tool for operating system problems in

TWOS.  It provides access to most of the information needed in determining

what has gone wrong in a run.

Originally, the tester was used even more extensively.  It was first set up to

serve as a tool for interactively testing the correctness of various functions in

TWOS.  A new function that had just been written could be called directly by the

tester with any parameter values the programmer wanted.  Just because a

piece of code worked well for the normal test cases that actual simulations used

did not necessarily mean that it would work for extreme values or unusual



combinations of values.  Since forcing TWOS to produce such unlikely, but legal,

sets of parameters directly was often very difficult, the tester provided a good

means for quickly checking the correctness of a piece of code.  This approach

proved most valuable during the process of writing some of the most basic

TWOS code, particularly before the system was in a state where it could work at

all, as a whole.  [Elshoff 88] describes a similar method used in debugging the

Amoeba system.

As an example of the use of the tester, sometimes a TWOS application will get

stuck, failing to make progress when it should, due to some error.  This behavior

can arise for a variety of reasons, including scheduler bugs, an infinite loop of

messages sent for the current simulation time, memory exhaustion, and many

others.  The program can be stopped, the tester used to examine the scheduler

queue, and the program restarted.  Then the scheduler queue and message

queues could be examined again, giving clues about the behavior of the

application.



4.3  The Monitor

In some cases, determining the flow of control of TWOS is more useful than

examining the results of a run with the tester.  The TWOS monitor is used

for such cases.  The monitor is not normally built into TWOS, as it is somewhat

clumsy to use (owing to hardware limitations early in the project) and slows the

system down.  TWOS must be recompiled to include the monitor.  On the other

hand, the monitor has a lot of flexibility once it has been set up.  The monitor

is primarily used for debugging TWOS itself.

The monitor allows the programmer to print a message every time certain

routines are called.  Routines can be flagged from a file read at run time, or

interactively with the tester.  The message indicates which routine has been

called and the values of its parameters.  If desired, the monitor can trap to the

tester when a certain routine is called, allowing the programmer to instantly

examine the state of the system before any of the routine’s code is executed.

The monitor is generally used for particularly thorny problems, where the

tester alone proves insufficient.  A good general purpose debugger might well

provide the same capabilities.  However, the monitor does correctly handle

running on multiple nodes.

The monitor proved useful on several occasions.  For instance, the monitor

proved fast enough to catch some race conditions.  When the message passing

system on an early piece of hardware used by TWOS (the Mark II Hypercube)

was being debugged, the TWOS monitor showed that there were race

conditions in message broadcasting.  Sometimes a race condition could cause a

broadcast to send too few messages.  A few days later, the monitor caught the

less common case of a broadcast sending too many messages.

4.4  The TWOS Progress Chart

Many of the worst TWOS problems have not had to do with correct operation,

but with efficient operation.  The goal of TWOS is to run simulations quickly, so,

even if the results are correct, the system is fatally flawed if it doesn’t achieve

good performance.  Performance problems are often very hard to diagnose in

TWOS.  Unlike correctness problems, one generally cannot quickly pin down the



problem to one section of the code.  Debugging performance problems is a

common theme in parallel processing [Segall 85], [Socha 88].

Several TWOS tools are specifically designed to help with performance problems

[Bellenot 89].  One of these is the progress chart.  The progress chart is a

graphical tool that plots lines on a screen for every event run during a

simulation’s execution, both committed and uncommitted.  In a single picture,

the progress chart can summarize the entire course of a TWOS run.

The progress chart works by keeping a detailed log of all event executions in

TWOS.  In principle, the person debugging TWOS could look at this log for

insight into performance problems.  However, a typical TWOS run might have

over 300,000 committed events, and perhaps half as many more events that were

rolled back.  The event logs for such simulations are far too large to scan

manually.

The progress chart uses this data to plot a graphical display in which each event

execution is represented by a line on the display.  The display plots real time

versus simulation time, as shown in figure 1.  In most cases, the lines are so short

that they appear as points in the normal display.

This chart shows several interesting features.  First, it gives an idea of the

progress of the simulation.  Areas of the chart that are fairly flat suggest that

little progress is being made in simulation time for a long period of real time.

Either the simulation has a lot of work to do in that span of simulation time, or

TWOS is not doing a very good job of speeding things up during that span.

Areas of the chart with large slopes indicate that TWOS is speeding over those

spans of simulation time.

The chart also gives an idea of the range of simulation times being executed on

the various nodes at the same real time.  A broad vertical spread indicates that

some nodes are very far ahead of others at that point.  A narrow spread indicates

that all nodes are working within a small band of simulation time at that point.



Figure 1:  A Time Warp Progress Chart

The chart shows another interesting feature of the simulation, the progress of

global virtual time in real time.  The lower bound of the graph is the virtual time

at which the earliest event is occurring at any real time.  This bound is precisely

GVT.  Thus, examining this chart can show which parts of the simulation had

quick GVT progress, and which parts progressed slowly.

The progress chart is a color display whose colors can be used in two ways.

First, the chart’s lines can be color coded to the types of object in the simulation.

For instance, in the colliding pucks simulation whose chart is shown in figure 1,

pucks’ events are colored blue, while sectors’ events are colored red.  The

simulation designer can rather easily set his own color scheme.  Alternately,

colors can be used to highlight which events are committed and which rolled

back.  This color coding can help determine the rollback behavior of the

simulation.



The display is interactive.  The user can request the chart to show only a single

node of the run, or the events for only a single object.  The user can zoom in on

particular areas of the chart, get information about each individual event, or

switch back and forth between color coding by object type and color coding by

rollback status.  The display has a number of other features, as well.

TWOS can also produce another related display.  Rather than showing all of the

events run by the simulation, it can show all the messages sent, both committed

and uncommitted, and the event cancellation messages, as well.  The length of a

line on the message chart indicates how long an individual message took to

deliver.  The interface to this display is similar to that of the progress chart.  At

the level of resolution possible in this paper, the message chart appears very

similar to the progress chart, so a separate figure is not shown.

The progress chart and the message chart have proven very valuable in tracking

down performance problems.  For instance, the message chart detected that

TWOS antimessages did not travel fast enough in an old version of TWOS, so

they could not always catch up with erroneous computations and cancel them.

Later, an error in the scheduler caused nodes to go into idle mode prematurely.

This went undetected for a while, because the arrival of a message would restart

the scheduler.  The problem was noticed when a simple test simulation with

very few messages took too long to run.  Occasional system messages would

turn the schedulers back on for a short time, but then the system would go idle

until the next round of system messages.  The message plot showed these broad

gaps of inactivity.  More recently, the message plot has shown the negative

effects of paging on the Mach version of TWOS.

[Lehr 89] describes a graphical tool bearing some resemblance to the progress

chart.  However, it does not include a concept of virtual time, so it does not show

progress in virtual time versus real time.

One improvement necessary for both the progress chart and the message chart is

to permit selective tracing of particular objects or periods of time during the run.

The logs necessary to run these tools tend to be very large and the memory

requirements for storing the data can sometimes prove burdensome.  A similar

filtering approach is used by [Elshoff 88], and many others.  This improvement

will be made when time permits.



4.5  The Event Log

TWOS can keep a log of committed events for a simulation.  This log has one

entry for each event, describing the object performing the event, the simulation

time of the event, and the object sending the message that caused this event.  If a

simulation is producing non-deterministic results, indicating an error in TWOS,

the event log can be used to track down the problem.  Logging and replay is a

commonly used method in parallel debugging [Lin 88], [Cheung 90], though

TWOS’ use of the method has certain wrinkles not present in other systems.

The event log is used in two ways.  First, the sequential simulator can also

produce an event log.  That log can be compared against the event log for an

incorrect TWOS run to find the point of divergence.  Knowing precisely the first

event that produced different results from the correct run can be very helpful in

tracking down the problem.

Sometimes, though, knowing where divergence occurred is not, itself, enough.

If the problem is internal to TWOS, the event log may not contain enough

information to determine the cause of the error.  In such cases, the event log can

be used in another way.  TWOS can read a correct event log into memory and

start a run.  At the point of first divergence of committed results for this run

from the event log known to be correct, TWOS will print an error message and

call the tester, allowing the debugger to thoroughly investigate the state of the

machine.

The event log can also be useful for certain types of simulation debugging.  For

instance, a simulation programmer might have replaced sorting algorithms with

more efficient ones, still expecting to get the same sorted results.  If an error in

the new version causes the simulation to produce improper results, an event log

from the old version can be compared to the new version’s event log to track

down where the error first occurs.

Recently, the event log was used to detect differences in the floating point

algorithms used by two different machines.  Both machines used Motorola 68020

processors and compilers from the same manufacturer, but a simulation ran

differently on the two machines.  By taking event logs of the two runs of the

simulation, comparisons were made that pinpointed the first event at which



divergence occurred, which led to detection of differences in the floating point

arithmetic algorithms present in both the hardware and the software.

4.6  Paranoid Code

TWOS’ goal is speed, so the system tries to avoid unnecessary tests and checks

that would slow down normal execution.  When an error occurs, however, it

often could have been trapped before it caused a crash or otherwise destroyed

the information necessary to find it if the system had contained code to check for

potential problems.  TWOS contains a lot of code of this sort, but it is “paranoid”

code – it is normally not compiled into the system.  When a new capability is

being added to TWOS, or a problem has arisen, the system is recompiled with

the paranoid code included.  Frequently, this code will instantly spot a problem.

Paranoid code typically consists of tests performed on every one of some

common operation.  For instance, TWOS contains many lists, so it has generic

code for creating list elements, deallocating list elements, linking and unlinking

them, and so forth.  These operations are performed millions of times during a

typical TWOS run, so they are implemented in a very simple, efficient way.

However, sometimes system errors arise that corrupt list element headers, or fail

to unlink them before deallocating them, or otherwise do not follow the rules of

handling list elements.  TWOS contains paranoid code that tests the validity of

list element headers every time they are operated on, to ensure that the operation

is valid at that point, and that the headers haven’t been corrupted.

One of the first actions taken when a version of TWOS begins to crash is to

recompile it with the paranoid code enabled.  Frequently, the paranoid code will

trap the error before it gets too far the next time it occurs.

4.7  Special Purpose Tools

The TWOS project has used several special purpose tools to track down

problems in particular parts of the code.  One such tool is called the Hypercircle.

When TWOS was running on the Caltech/JPL Mark3 hypercubes, certain

performance problems occurred that might have been caused by

communications bottlenecks between the nodes, or by differences in the time

necessary to travel between nearby nodes versus far away nodes.  The

Hypercircle was designed to test this hypothesis.



The Hypercircle consisted of a graphics display and associated text.  The

graphics display drew a 32 node hypercube architecture in three dimensions.

Initially, each pair of nodes having a physical connection was connected by a a

faint line on the display.  As the Hypercircle program ran, reading in a record of

a TWOS run, every message sent in the TWOS run was represented on the

display by a temporary bright line traversing the path from source node to

destination node actually taken in the hypercube.  Negative messages were

shown in a different color than normal messages.

Each arc of the Hypercircle grew brighter and thicker as messages travelled

along it.  As time went on, any arcs that were particularly heavily used (or

lightly used) would begin to stand out noticeably in the pattern.

Simultaneously, a running display at the bottom of the screen showed the

elapsed time necessary to send messages over a different number of hops, from 1

to 5.

This display clearly, graphically demonstrated that network contention was not

the problem, nor were inordinate delays in messages travelling over long paths

versus those travelling over short paths.  The performance problems proved to

have more to do with internal handling of messages at the source and

destination nodes than with any delays in getting them from one to the other.

Another tool has helped in debugging TWOS’ dynamic load management

facility [Reiher 90b].  The load manager is supposed to move load from “heavily

loaded” nodes to “lightly loaded” nodes, where “load” is a quantity rather

specific to TWOS and its optimistic method of execution.  The same basic

logging code used to produce the event log was quickly adapted to produce a

log of loads on different nodes at different points in the simulation.  The log also

holds information about migrations performed to implement load management

policies.  This information was then used to determine the correctness and

efficacy of the load management policy.

This log has also been used to feed a graphical dynamic load management

display.  This display can run in either single step or continuous mode, and

clearly shows load being transferred from heavily loaded nodes to lightly loaded

nodes, and the subsequent evening of the loads on the two nodes.  It also shows



how much information had to be transferred to accomplish a migration, giving

some idea of the cost of the migration.

Another method used to debug TWOS is to write test applications that stress

particular aspects of the system.  Certain applications meant to induce cascading

rollbacks have uncovered problems with the message delivery system and the

handling of system messages.   One such application, described in [Bellenot 89],

was called “slooow”.  This “target and arrows” simulation had lots of fast arrow

objects that shot messages at a rather slow target object.  The node hosting the

target object would run out of memory much faster than the nodes hosting

arrow objects, uncovering flow control problems.

Invariably, new features added to TWOS received their most serious debugging

only when an actual application started to make extensive use of them.  To some

extent, test simulations would uncover certain problems in the features, but only

actual patterns of usage would uncover the full range of flaws in the methods.

The TWOS project has been fortunate enough to have an associated simulation

development project that has provided realistic, complex benchmarks that have

been of tremendous value in finding bugs and fixing performance problems.

4.8  Sequential Debuggers

The earliest machines TWOS was run on did not have sequential debuggers, but

all of the platforms currently supported do.  These debuggers range in

sophistication and ease of use, but all of them offer stack tracing, breakpointing,

and the ability to examine variables, given that the program is compiled with the

appropriate flags.  However, these debuggers run on only a single node of a

machine at once.  Moreover, they do not have the built-in understanding of

tester about the form of TWOS data structures, nor about the relative importance

of different fields in those data structures.

Despite these limitations, sequential debuggers have been substantially helpful

in finding certain classes of TWOS problems.  They offer better information in

the face of actual crashes than any of TWOS’ specialized tools, and they can offer

complete access to all instantiated variables, which the tester and the monitor

cannot.  However, they are not substitutes for the TWOS tools.  Typically,

sequential debuggers can take a very long time to start up.  They do not

currently offer the ability to move quickly and easily from node to node of the



machine, an ability that is often a requirement for finding problems.  And they

cannot show an object’s input queue, or the scheduler queue, or the object

location data structures in the same simple, seamless way that tester can.

Availability of a true parallel debugger, such as those described in [Lehr 89] and

[Socha 88], would be a great improvement, but would still not totally replace the

special TWOS tools.

5.  Availability

TWOS version 2.0 is available through NASA’s Cosmic software distribution

system.  The release includes some, but not all, of the tools discussed in the

previous sections.  Included are statistics interpretation tools; the graphical

message and progress chart tools; and the tester, the monitor, and paranoid code

(which are built into TWOS).  Not included are the event log tools, the dynamic

load management graphical tool, the Hypercircle, and the special purpose

applications used to debug TWOS.  This version of TWOS runs on networks of

Sun 3 and Sun 4 workstations, the BBN Butterfly GP1000 running the Chrysalis

Operating System, and the Caltech/JPL Mark 3 Hypercube.  Information about

obtaining TWOS version 2.0 is available from



Computer Software Management and Information Center

The University of Georgia

382 East Broad Street

Athens, GA  30602

The Jet Propulsion Laboratory does not provide support for this version of

TWOS.

6.  Conclusions

TWOS has been a challenging system to debug.  First, it is an operating system

that has close control of its hardware, thus giving it many opportunities to make

disastrous choices.  Second, it runs on parallel or distributed hardware, adding

many possibilities for errors based on asynchrony and timing.  Third, it uses an

unusual synchronization method that was unproven at the start of the project,

and that still tends to defy intuition.  Fourth, much of the hardware used for

development had only primitive debugging software available.  Fifth, it is a

research system devoted to working with fairly risky methods, so no existing

algorithms could be adapted for  many important system functions.

Our experience in debugging TWOS should be instructive to others developing

complex parallel and distributed systems.  The value of deterministic results in

debugging was great.  The TWOS experience with providing deterministic

results suggests that other distributed systems projects should consider

attempting to provide determinism at the user level, for debugging reasons, if

for no other purpose, even if the synchronization method is not synchronous.

TWOS’ extensive use of redundant statistics for error detection has proved

invaluable, and is a technique that should be used by all system developers.  We

have long since lost track of how many bugs were discovered only due to

problems in the statistics.  We regard the early decision to keep redundant

statistics for crosschecking to be the single best decision made in the course of

this project.

One important lesson learned from the TWOS debugging effort is that any

ambitious systems project must budget time for the development of debugging



tools.  The tools will have to be developed, one way or another, and watching for

opportunities to develop them will save time in the long run.  Not recognizing

this fact early in the project was quite expensive for TWOS.  Once personnel with

an understanding of the importance of strong debugging support arrived,

progress became much more rapid.

The value of interactive graphical tools, particularly the progress chart and the

message chart, was great.  These tools allowed developers to pinpoint many

subtle problems by giving an overall view of the system’s behavior, while

simultaneously allowing more detailed examination of suspicious areas of the

charts.

The TWOS experience also points up the importance of testing a system with

pathological application programs.  While the system should certainly not be

tuned to handle unlikely situations at the cost of normal ones, understanding

how the system behaves in extreme cases is vital.

Most of the TWOS debugging tools are not revolutionary.  Some of them are

familiar to most software engineers, and some of them, while new, are so

specific to the TWOS problem that they are unlikely to be of direct use to many

other groups.  However, the overall approach TWOS takes to debugging

provides an interesting case study of successfully applying existing techniques

and inventing new techniques to ease in the debugging of an experimental

research distributed system.
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