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Abstract

The Time Warp Operating System runs discrete event
simulations on parallel hardware.  One requirement of the
system is that simulations produce deterministic results
identical to sequential runs of the same programs.
Providing this level of determinism on parallel hardware
has required care in designing the system and discipline
by applications writers, but also has benefits.  It has
assisted in detecting a number of errors in both the system
and its applications, and allowed the use of a special
debugging tool that has proven valuable in dealing with
such errors.  This paper discusses some of the reasons for
providing determinism, the problems of doing so, and the
benefits of determinism.

Introduction

One definition of an operating system is that it provides
users with a friendlier virtual machine than the native hard-
ware.  The operating system takes responsibility for many
of the more difficult and tedious chores that must be per-
formed, providing its users with a simpler interface.
Because parallel and distributed operating systems often do
not provide the virtual machine that most users want, one
major branch of recent operating systems research has been
devoted to improving the virtual machines offered on top
of parallel and distributed hardware.

At the minimum, most users want their distributed system
to act like a sequential machine.  Sequential machines are
familiar and less complex.  Turning an actual parallel or
distributed machine into a virtual sequential machine,
without losing the performance advantages of the
distributed hardware, has many challenging problems.  One
of these is determinism.

Deterministic systems have important advantages over
non-deterministic ones.  They are easier to program and
debug.  Full determinism in all aspects is rarely possible,
however.  For instance, guaranteeing that a given program
will always run in precisely the same amount of time is not

generally possible, even on most sequential machines.
However, sequential systems can usually guarantee that a
program’s results are deterministic, if not its performance.
With a given set of inputs, most programs will always
produce the same results when run sequentially.

Sequential systems do not always give deterministic
results, themselves.  In particular, fatal program errors
often result in different crash symptoms from run to run.
Similarly, when a programmer takes an action that is not
defined by the operating system interface, determinism is
not always guaranteed.  Such cases are usually regarded
as errors in either the system or the application, however,
and would be equally erroneous in a distributed system.

Determinism is not necessarily correctness.  No operating
system can guarantee that it will do what the user wants.
At most, it can guarantee that it will do exactly what the
user tells it to do.  If a program produces results different
than those the user desired, the best any system can do is to
faithfully reproduce the same incorrect results,
deterministically, from run to run.

Providing this level of determinism for parallel and dis-
tributed systems is much harder than for sequential
systems, especially if one also wants to extract speed from
processing in parallel.  With many independent processing
elements and a communications system that often does not
make guarantees about timing and ordering of inter-
processor communications, a distributed system has many
opportunities for non-determinism.  The central problem in
providing determinism for such systems is synchronizing
multiple processors to guarantee that all program actions
happen in the same order for two successive runs of the
program.

The Time Warp Operating System (TWOS) is a special
purpose operating system that runs discrete event
simulations on parallel hardware, with the central goal of
speedup [1].  It uses the theory of virtual time [2] to
provide synchronization without compromising speed by
blocking processes.  TWOS has had great success in
speeding up discrete event simulations by the virtual time



method [3], [4], while at the same time guaranteeing the
same results as if the simulation had been run sequentially.
The virtual machine provided by TWOS gives a high
degree of determinism.  From the point of view of the user,
a program running on TWOS will provide exactly the same
results when run on one processor or a hundred, with the
only difference being in performance.  The current version
of TWOS even guarantees determinism despite
dynamically migrating processes from processor to
processor during execution [5].

Performing actions in the proper order is an absolute
requirement for most discrete event simulations.  The
correct ordering of a simulation’s events is completely
defined by the simulation times at which events occur.  An
event with an earlier simulation time may affect an event
with a later simulation time.  If an earlier event does affect
a later event, the system must be certain that the earlier
event is completed before the later event starts.  Thus,
TWOS is required to provide a virtual machine to its users
that appears to process events in strict simulation time
order.

Meeting this requirement has proven to have interesting
implications for how TWOS simulations must be written,
for the implementation of the operating system, and for
debugging both the operating system and simulations.  This
paper first introduces the Time Warp Operating System,
then discusses the implications of determinism for user
programs, and finally covers how TWOS can provide the
required level of determinism, as well as how TWOS can
take advantage of determinism to help in debugging both
the system and user programs.

The Time Warp Operating System

TWOS has been under development at the Jet Propulsion
Laboratory since 1983.  It has been a complete, functional
system since 1986.  TWOS has run on a variety of parallel
and distributed hardware, including the Caltech/JPL Mark
2 Hypercube, the Caltech/JPL Mark 3 Hypercube, the BBN
Butterfly GP1000, the Inmos Transputer T800, and
networks of Sun3 and Sun4 workstations connected by an
Ethernet.

TWOS typically runs on top of an existing operating
system.  In the case of the BBN GP1000, it runs on top of
both the Chrysalis system and Mach.  In the case of the
Sun network, it runs on top of the UNIX system.  The
native operating system is typically used only to provide a
low-level message passing facility.  TWOS does not use
the native operating system’s memory management or
scheduling capabilities.

A simulation to be run on TWOS must be decomposed into
objects, which run events and send timestamped messages
to other objects.  (TWOS objects are similar to processes in
most operating systems, and can be read as synonymous
with “process” .)  The timestamp on a message is the simu-
lation time at which it is to arrive at its destination object.
The arrival of a message at an object causes that object to
execute an event at the simulation arrival time.  Objects
communicate with one another solely by passing messages,
with no shared memory whatsoever.  Except for initializa-
tion and termination code, all user code runs as part of an
event.

TWOS runs one simulation at a time, with the goal of
completing that simulation as quickly as possible.  Each
node of the parallel processor hosts several objects,
scheduling them independently of all other nodes.  The
local object with an unprocessed message at the earliest
simulation time is always run next.  Since TWOS’ goal is
fast completion of the overall simulation, fairness in
scheduling objects is not a consideration.  Therefore,
TWOS does not employ time sliced scheduling.  Objects
are only pre-empted when another object receives a
message at an earlier time than that of the event currently
running.

Since each processor schedules without waiting for or con-
sulting other processors, at any given instant of real time
the system’s processors may be working at a wide range of
simulation times.  An object working in the simulation past
can send a message to another object working in the
simulation future.  If the message is scheduled to arrive at
a time earlier than the receiving object is currently
handling, the receiver must roll back his computation to
the time of the newly arrived message.  Any erroneous
work done by the out-of-order computation must be totally
undone.  Undoing the erroneous work requires throwing
away local results and sending message cancellations to
other objects.  TWOS is able to correctly undo any work
done prematurely, along with any side effects it may have
had.  TWOS rollback and message cancellation is totally
transparent to the application program.

At any given moment in a TWOS run, the simulation’s
objects have performed some work correctly, and some
work in error.  TWOS periodically calculates the earliest
simulation time that could still be in error.  Any work done
for simulation times earlier than that time will never be
rolled back, and can be committed.  Both events and
messages can be committed.  A committed message is one
that would have been sent in the sequential run of the
program, and a committed event is one that would have
been performed in the sequential run of the program. In



essence, these committed actions represent the correct path
of computation for a simulation.  To meet its definition of
correct behavior, any event or message TWOS commits
must exactly correspond to an event or message that would
be committed in a sequential run of the same simulation,
and every message or event in a sequential run of the
simulation must be matched by a message or event in the
committed trace of the parallel run.

The TWOS project has developed a sequential simulator
called TWSIM that runs exactly the same simulations as
TWOS. TWSIM is a conventional event list simulation
engine designed to support application prototyping and
provide single processor performance figures.  TWSIM
also serves as a useful tool for testing the deterministic
performance of TWOS, as its execution of an application
must be identical to the committed trace produced by
TWOS.  TWSIM uses a central event queue implemented
as a splay tree, and has been extensively optimized for
speed.  It runs on one processor of the same hardware as
TWOS itself.  The sequential simulator never does work
optimistically, and never needs to roll back any work it has
done.

In a production environment, TWSIM would be used only
for developing simulations, not for determining speedup
nor validating determinism.  TWOS, if properly designed
and implemented, should produce deterministic results
without the necessity of validating them, so that users
would never make TWSIM runs strictly for the purposes of
validating determinism, unless an error had been detected.

Experience with TWOS has shown that optimistic
execution can provide excellent speedup of discrete event
simulation, despite fairly frequent rollbacks of work done
improperly.  TWOS has achieved speedups in excess of 40
times the speed of the same simulation performed by
TWSIM [4].

TWOS is being used to develop real simulations, and has
been tested with a variety of simulations, including
military simulations [3], physics simulations [4],
simulations of computer networks [6], and biological
simulations [7].

Determinism at the User Level

TWOS users want their parallel machine to behave exactly
like a single sequential machine, but faster.  Completely
hiding the parallel nature of the system is not feasible, if
the simulation designers want to get good speedups, but
they can reasonably expect that anything they do will
produce the same simulation results in parallel as
sequentially.

An example from a typical simulation will illustrate the
problem.  In a military simulation, a moving unit may enter
the domain of a sector of the battlefield.  Sectors are
usually responsible for determining which units can detect
other units, so they require complete information on the
position and velocity of all units within their boundaries.
When a unit moves from one sector to another, the old
sector sends a message telling the new sector to add the
unit to its lists.  Meanwhile, the unit may change its speed.
This change must be relayed to the new sector so that it
can properly track the unit, so a message with the change
of speed is also sent to the sector.  In simulation time
order, the message to add the unit to the sector should be
received before the message to change the unit’s speed.

In a sequential simulation, this situation causes no
problem.  The moment that the necessity to change sectors
is noted, an event will be posted on the event list at the
time of the change.  The change of velocity message will
be posted further along the same event list.  Since
sequential simulators simply remove events from the
central event list in simulation time order, the change of
sector will be processed before the change of velocity.

But most distributed systems cannot make general guaran-
tees about the order in which the messages will be
delivered, unless careful ordering protocols are used, with
correspondingly high costs.  The change of velocity
message may arrive at the processor hosting the sector
before the change of sector message.  If the sector simply
processes the change of velocity message, it will flag an
error, as it does not know about the unit.  The later arrival
of the change of sector message is too late to catch the
change of velocity message, even thought the user had
every reason to expect that it would.  These messages must
be processed by the sector in the simulation time order.

The same problem can arise even if the underlying
message passing system guarantees ordered delivery of
messages.  The change of velocity message and the change
of sector message may have been sent by two different
objects on two different processors, and the change of
velocity message might even have been sent earlier in real
time than the other message.  Ordered delivery alone is not
a sufficient solution.

Even guaranteeing that messages will be delivered in
simulation time order may not be enough.  The two
messages could be scheduled to arrive at precisely the
same simulation time.  In the sequential case, either this
timing would be all right, and the receiving sector would
know it must process the unit arrival message before the
change of velocity message, or it would be an error that
would be discovered while debugging the simulation.  In



the parallel world, however, one run of the program could
coincidentally deliver the messages in the proper order,
while the next run delivered them in the improper order.

Non-deterministic handling of these two messages is not an
option for this case, nor for simulations in general.  If
messages are not processed in simulation time order, the
resulting simulation does not do what the user has every
right to expect it to do.  Two methods are known for han-
dling the problem.  One is to use a protocol to ensure that
the earlier message is handled first, regardless of which
message physically arrives first [8].  This method performs
poorly for many types of simulations.  The second method
is to handle whichever message comes in first
immediately, and undo the results if the ordering was
incorrect.  This method, implemented by TWOS, performs
well for a wide variety of simulations, and can give
deterministic results, if users follow certain rules.  These
rules are not particularly unusual for an operating system,
as they amount to honoring the interface provided by the
system.  Most operating systems, sequential or distributed,
run into trouble when the user attempts to do things not
specified by the interface.

The most basic rule is that all references to anything under
the user level of the machine must go through TWOS.
Users may not reference the hardware itself, including
memory locations, hardware clocks, and I/O devices.
Users also may not examine any internal operating system
information such as the scheduler queue.  More subtly,
they may not use any operating system call except those
provided by TWOS.  TWOS typically runs on top of an
existing operating system, such as Mach, but users must
not put calls to Mach in their programs.  For instance, user
programs are forbidden to call printf().  Instead, they must
call a function provided by TWOS called tw_printf().

These precautions are necessary for two reasons.  First,
anything outside the scope of TWOS is inherently non-
deterministic.  Hardware clocks will usually have different
values each time they are consulted, for instance.  The
second reason is that TWOS may need to roll back and
undo any work done by user objects, and the user object
cannot know, at the time it is running, whether its work
will be rolled back or not.  In order to roll back the object,
TWOS must have complete knowledge of everything that
the object has done, including changing internal variables,
sending messages, printing output, and allocating memory.
If the user object accesses something outside of the scope
of TWOS, TWOS will not be able to undo the action.  For
instance, a printf() would have been printed directly to the
standard output, and TWOS cannot trap or undo it.  If the
first execution of the event was in error, the resulting irre-
versible action would be in error.  Even if the second

execution is identical to the first, the irreversible action
would be performed twice.  The tw_printf() call, on the
other hand, delays actually sending the information to the
standard output until TWOS can be sure that the event
producing it will be committed.  If the event is rolled back,
the actions taken by the tw_printf() call can be totally
undone.

Requiring users to work through TWOS is not a major
problem for running discrete event simulations, as such
programs are largely self-contained and do not interact
with the underlying hardware or software very often.
TWOS has provided capabilities for handling the most
frequent types of simulation interactions.  Running more
general programs would require adding many additional
capabilities to the current implementation of TWOS.

One important TWOS issue relating to determinism is
handling multiple messages for the same object at the same
instant in simulation time.  These messages are handed to
the user object in a bundle, allowing the object to handle
them all at once, if so desired.  To guarantee determinism,
TWOS must also guarantee a single ordering of a set of
messages in such a bundle from run to run.  Therefore the
ordering of messages in a bundle must not be by the order
of their arrival.  TWOS orders a bundle by the user-
provided message selector (a field indicating the type of
the message), then all bytes of the message texts.  Unless
two messages are absolutely identical, they will always
appear in a deterministic order within the bundle.  If they
are identical, their ordering does not matter, since the user
cannot distinguish which is which.

Operating System Implications of Determinism

TWOS is committed to providing a deterministic virtual
machine to its users, but it cannot run deterministically
itself, because the hardware and software hosting it are
non-deterministic.  TWOS is the layer that provides
determinism.  Despite the non-deterministic nature of
TWOS’ internal execution, determinism at the user level
has provided some benefits in the development of TWOS
itself.
The only systems problem in providing determinism
TWOS faces that would not arise for other purposes is
ensuring proper message ordering.  The only other sources
of non-determinism are blatantly incorrect synchronization,
which is unacceptable regardless of the system’s position
on determinism, and applications that use the underlying
hardware and software, which TWOS cannot prevent.  The
message ordering problem for TWOS is actually fairly
simple.  The system must guarantee that any committed
event sees the same messages in the same order as the
corresponding event in a sequential run.  The system never



knows, when running an event, whether it will be
committed or not, but the committed run will certainly
have the complete bundle of messages for the event, so
TWOS must order them properly.  Simply ordering all
messages in the bundle by their selectors, and, within
selectors, by a byte-for-byte text comparison is almost
sufficient.

The only difficulty is ensuring that the byte-by-byte order-
ings of two supposedly identical messages from two differ-
ent runs really are identical.  Problems may arise if the
buffer used to hold the copy of the message contains unini-
tialized fields.  If the compiler, or the TWOS memory
management system, allows these fields to contain
different uninitialized values, then supposedly identical
messages could actually contain different contents from
run to run, resulting in different orderings of the messages.
TWOS solves this problem by ensuring that message
buffers are always cleared before being given to the user,
and by ensuring that the compiler does not permit any
portions of a structure to contain uninitialized, unzeroed
fields.

TWOS must also provide the necessary guarantees that
rollbacks will occur properly whenever necessary, undoing
precisely that work that was done in error.  TWOS must
further assure that the work will be redone correctly.
However, these guarantees are necessary for reasons above
and beyond determinism.  Without such guarantees, TWOS
would never be able to make any assurances whatsoever
that it was operating in a correct manner.  Proper use of
rollback, message cancellation, and re-execution is vital to
TWOS, and has been implemented very carefully.

One further problem is providing deterministic results on
heterogeneous hardware.  In the simpler case, an
application run on two different types of machine may give
deterministic answers on each type of machine, but
different answers between the classes.  Issues of
representation of various data types (such as floating point
numbers) and the order of bytes within a word can make
providing the same answer across different types of
machines very difficult.

The problem is even worse if the application is run on a
heterogeneous network.  In this case, providing even the
same results from run to run on the same set of hardware is
difficult unless all objects reside on the same processors for
all runs.  Since heterogeneity is not the focus of the TWOS
project, little has been done to deal with this issue.  TWOS
runs are always done on homogeneous hardware.

Determinism and Debugging

Since TWOS must be guaranteed to produce deterministic
results when applications programs follow certain rules,
any non-determinism that appears in a TWOS run is caused
by an error in either the application or TWOS.  Once the
application has been checked to make sure it follows the
rules, the problem is narrowed to TWOS itself.

TWOS keeps statistics that assist in detecting non-
determinism.  The sequential run of an application will
produce a certain number of messages sent from one object
to another, and a certain number of events caused by those
messages.  (Since an event can be caused by multiple
messages, the two numbers are not necessarily the same.)
A TWOS run must produce exactly the same number of
committed messages and committed events.  TWOS prints
the number of committed messages and committed events
at the end of the run.  By checking these numbers against
the numbers produced by the sequential version of the
application, or previous parallel runs, TWOS can check for
obviously non-deterministic results.  (Two different runs of
the same application could produce the same number of
messages and events without being exactly the same.
These statistics would not detect non-determinism in such
cases.  However, the size and complexity of the test
applications make such coincidences unlikely.  If the
possibility of them seems high, then user level results from
the simulation itself can be checked against the proper
answer.)  In production mode, the user clearly would not
make a sequential run to match every parallel run just for
purposes of validating determinism.  But if the parallel run
produced suspicious answers, using TWSIM to validate
determinism would be a good place to start debugging.

In many cases, mismatches on the committed statistics of
an application have signalled errors in TWOS.  Some of
these errors have been related purely to deterministic
concerns, such as the method of ordering messages.
Others, however, have been fundamental errors like losing
messages, failing to roll back properly, or errors in the
scheduling algorithms.  Even if one were willing to accept
a certain non-determinism in the results, these phenomena
could only be regarded as errors requiring correction.  The
failure of TWOS’ determinism brought them to light much
more quickly than if we had not demanded deterministic
results from the mechanism.

Once such a problem has been detected, the usual
difficulties of debugging parallel or distributed code arise.
Often, the error producing incorrect committed results is
itself non-deterministic, so it may not appear on subsequent
runs.  Sometimes the problem is based on timing
considerations, so inserting debugging code can make it
disappear.  However, an error whose symptom is incorrect
committed results responds to an important debugging tool.



TWOS can check the correct flow of the program against
the incorrect results caused by the error, message by
message and event by event.

A TWSIM run of the application can produce a complete
trace of every event that should be performed and the
messages that caused it.  This trace is called the event log.
TWOS can read an event log before the run starts and
check it against each message and event committed.  As
soon as a mismatch is detected, TWOS will halt and call
attention to the point of divergence.  The event log has
proven of immense value in debugging TWOS.  It can only
be used, of course, in a system expected to produce
deterministic results.

The event log is also useful for applications writers.  First,
it allows them to find places in their programs where they
have inadvertently broken one of the rules of behavior
necessary to guarantee determinism.  In addition, the event
log is helpful if the applications writer has made changes to
the program that were not intended to change the
committed results of the program, such as converting to
faster versions of sorting and searching algorithms.  Again,
if the system could not be counted on to produce
deterministic results, the event log could not be used this
way.

The event log, as currently implemented, has certain
limitations.  Typical fairly simple discrete event
simulations may perform 500,000 or more events.  The
simulations run for practical purposes may contain millions
of events.  Logs of so many events are huge and unwieldy.
The current implementation of TWOS has further problems
with large event logs, as they must be stored in main
memory due to hardware restrictions.  Ideally, event logs
should be kept selectively, logging events only for those
objects that seem to be in error, and during those stretches
of simulation time when the error first appears.  Usually,
an examination of the statistics and results of an incorrect
run can give some hint as to the original source of the
error, and this information could be used to selectively
trace the actual problem area.

Conclusions

Not all systems have a strict need for determinism.  Since
providing it does have costs, some systems may choose not
to provide it.  However, determinism is a great boon to the
user, since it makes the virtual machine he runs on appear
more like a sequential machine, easing the problems of
programming and debugging it.  Determinism also has
many benefits for the designer of the system, as it often
provides an early signal of a systems error that might

otherwise go undetected for quite a while.  Determinism
permits the use of the event log, a tool that can help
pinpoint the source of the error.

TWOS’ support of deterministic results is weak for hetero-
geneous systems.  Unless the different machines use a
common data format, TWOS cannot guarantee that a given
set of messages will be ordered the same way on all
machines, and, hence, cannot guarantee deterministic
results.  The problem is similar to heterogeneity problems
of other distributed systems, and is likely to require the
same kinds of solutions.  This work remains to be done.

The event log debugging tool requires certain
improvements to make it easier to use.  The ability to
select the objects and simulation time ranges for logging
would make the tool more useful.  These features will be
added to the event log tool.

A checkpoint/restart facility would ease debugging.  If a
determinism problem only manifests itself in the last five
minutes of a twelve hour run, debugging it with the
existing tools would be very time consuming.  With a
checkpoint/restart facility, the simulation could be run up
to the point at which the problem occurs, then
checkpointed.  Subsequent debugging runs would start
from the checkpoint.  Checkpoint/restart will be added to
TWOS in the future.

TWOS has found the necessity of providing determinism to
its users to be a great boon, above and beyond the simple
requirement.  In numerous cases, it has assisted both the
system designers and the application writers in finding
errors.  It also provides a quick, easy check for the correct-
ness of a run.  We would recommend anyone designing a
distributed system to consider providing deterministic
results to their users.

References

[1]  D. Jefferson, B. Beckman, F. Wieland, L. Blume, M.
Di Loreto, P. Hontalas, P. Laroche, K. Sturdevant, J.
Tupman, V. Warren, J. Wedel, H. Younger, and S.
Bellenot, “Distributed Simulation and the Time Warp
Operating System,”  ACM Operating Systems Review,
vol. 21, no. 4, 1987.

[2]  D. Jefferson,, “Virtual Time,”   ACM Transactions on
Programming Languages and Systems, vol. 7, no. 3,
1985.

[3]  F. Wieland, L. Hawley, A. Feinberg, M. Di Loreto, L.
Blume, J. Ruffles, P. Reiher, B. Beckman, P.
Hontalas, S. Bellenot,  “The Performance of a
Distributed Combat Simulation With the Time Warp



Operating System,”  Concurrency: Practice and
Experience, vol. 1, no. 1, p. 35, 1989.

[4] P. Hontalas and B. Beckman, “Performance of the
Colliding Pucks Simulation On the Time Warp
Operating System (Part 2: A Detailed Analysis),”  In
Proceedings of the 1989 Summer Computer
Simulation Conference, Clema, J., Ed., Society For
Computer Simulation, San Diego, CA, p. 91, 1989.

[5] Reiher, P. and Jefferson, D.  (1990), “Virtual Time
Based Dynamic Load Management In the Time Warp
Operating System,”  Transactions of the Society for
Computer Simulation, vol.7, no. 2, July 1990.

[6] M. Presley, M. Ebling, F. Wieland, D. Jefferson,
“Benchmarking the Time Warp Operating System
With a Computer Network Simulation,”  In
Proceedings of the SCS Multiconference on
Distributed Simulation, Unger, B. and Fujimoto, R.,
Eds., Society For Computer Simulation, San Diego,
CA, p. 8, 1989.

[7]  M. Ebling, M. Di Loreto, M. Presley, F. Wieland, and
D. Jefferson, “An Ant Foraging Model Implemented
On the Time Warp Operating System,”  In
Proceedings of the SCS Multiconference on
Distributed Simulation, Unger, B. and Fujimoto, R.,
Eds., Society For Computer Simulation, San Diego,
CA, p. 21, 1989.

[8] K. Chandy and J. Misra,  “Asynchronous Distributed
Simulation Via a Sequence of Parallel
Computations,”  Communications of the ACM,  vol.
24, no. 4, p. 198, Apr. 1981.

.


