Providing Determinism In the Time Warp Operating System-
Costs, Benefits, and Implications

Peter L. Reiher

Frederick Wieland

Philip Hontalas

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

The Time Warp Operating Systemruns discrete event
simuations on parallelhardware. Onerequiremenof the
systemis that simulationsproducedeterministicresults
identical to sequential runs of the same programs.
Providing this level of determinismon parallel hardware
hasrequiredcarein designingthe systemand discipline
by applicationswriters, but also has benefits. It has
assisted in detecting a number of eriarboththe system
and its applications,and allowed the use of a special
debuggingtool that hasprovenvaluablein dealingwith

sucherrors. This paperdiscussesomeof the reasondor

providing determinismthe problemsof doing so, andthe
benefits of determinism.

Introduction

One definition of an operatingsystemis that it provides
users with a friendlier virtual machine thtoe native hard-
ware. The operatingsystemtakesresponsibilityfor many
of the more difficult andtediouschoresthat mustbe per-
formed, providing its users with a simpler interface.
Because parallel and distributed operasggtemoftendo
not provide the virtual machinethat mostuserswant, one
major branch of recent operating systems resdasheen
devotedto improving the virtual machinesoffered on top
of parallel and distributed hardware.

At the minimum, mostuserswant their distributedsystem
to actlike a sequentiamachine. Sequentiaimachinesare
familiar and lesscomplex. Turning an actual parallel or
distributed machine into a virtual sequential machine,
without losing the performance advantages of the
distributed hardiare, has many challenging problen@@ne
of these igleterminism.

Deterministic systems have important advantagesover
non-deterministioones. They are easierto programand
debug. Full determinismin all aspectss rarely possible,
however. For instance guaranteeinghata given program
will always run inpreciselythe sameamountof time is not

generally possible, even on most sequentialmachines.
However,sequentiakystemscan usually guaranteehat a
program’sresultsare deterministic,if not its performance.
With a given set of inputs, most programswill always
produce the same results when run sequentially.

Sequential systemsdo not always give deterministic
results,themselves. In particular, fatal program errors
oftenresultin different crashsymptomsfrom run to run.
Similarly, whena programmeitakesan actionthatis not
definedby the operatingsysteminterface,determinismis
not alwaysguailnteed. Suchcasesare usually regarded
aserrorsin eitherthe systemor the application,however,
and would be equally erroneous in a distributed system.

Determinismis not necessarilycorrectness.No operating
systemcan guarantedhat it will do what the userwants.
At most,it canguarantedhatit will do exactly what the
usertells it to do. If a programproducesesultsdifferent
than those the user desired, the best any sysdemio is to
faithfully repraluce the same incorrect results,
deterministically, from run to run.

Providing this level of determinismfor parallel and dis-

tributed systemsis much harder than for sequential
systemsegspeciallyif onealsowantsto extractspeedfrom

processingn parallel. With manyindependenprocessing
elementsanda communicéions systemthat often doesnot

make guaramees about timing and ordering of inter-

processocommunicéions, a distributed systemhasmany
opportunitiesor non-determinism.The centralproblemin

providing determinismfor such systemsis syrchronizing
multiple processorgo guaranteehat all programactions
happenin the sameorder for two successiveuns of the

program.

The Time Warp Operating System(TWOS) is a special
pumpose operating system that runs discrete event
simulationson parallel hardware with the centralgoal of
speedup[l]. It usesthe theory of virtual time [2] to
provide synchronizéon without compromisingspeedby
blocking processes. TWOS has had great successin
speedingup discreteeventsimulationsby the virtual time

method[3], [4], while at the sametime guaranteeinghe
sameresultsasif the simulationhadbeenrun sequentially.
The virtual machine provided by TWOS gives a high
degree of determinism. From tpeint of view of the user,
a program running on TWOS will providxactlythe same
resultswhenrun on one processoior a hundred,with the
only differencebeingin performance.The currentversion
of TWOS even guarantees determinism despite
dynamically migrating processesfrom processor to
processor during execution [5].

Performing actions in the proper order is an absolute
requirenent for most discrete event simulations. The
correct ordeing of a simulatioris eventsis completely
definedby the simulationtimesat which eventsoccur. An

eventwith an earlier simulationtime may affect an event
with a latersimulationtime. If anearliereventdoesaffect
a later event, the systemmust be certain that the earlier
eventis completedbefore the later event starts. Thus,
TWOS s requiredto providea virtual machineto its users
that appearsto processeventsin strict simulation time

order.

Meeting this requirementhas provento have interesting
implications for how TWOS simuations must be written,
for the implementationof the operatingsystem,and for
debugging both the operating system and simulatidings
paperfirst introducesthe Time Warp Operating System,
then discusseghe implications of determinismfor user
programs,andfinally covershow TWOS can provide the
requiredlevel of determinismaswell as how TWOS can
take advantageof determinismto help in debuggingboth
the system and user programs.

The Time Warp Operating System

TWOS hasbeenunderdevelopmentt the Jet Propulsion
Laboratorysince1983. It hasbeena complete functional
systemsince1986. TWOS hasrun on a variety of parallel
anddistributedhardware jincluding the Caltech/JPLMark

2 Hypercube, the Caltech/JPL Marld$percubethe BBN

Butterfly GP1000, the Inmos Transputer T800, and
networksof Sun3and Sun4workstationsconnectedoy an
Ethernet.

TWOS typically runs on top of an existing operating
system. In the caseof the BBN GP1000,it runson top of
both the Chrysalissystemand Mach. In the caseof the
Sun network, it runs on top of the UNIX system. The
native operatingsystemis typically usedonly to providea
low-level messagepassingfacility. TWOS doesnot use
the native operating system’s memory managementor
scheduhg capabilities.

A simulation to be run oMWOS mustbe decomposethto
objects, which run events and sendtimestampednessages
to other objects. (TWOS objects are similaptocessem
most operatingsystems,and can be read as synonymous
with “process.) Thetimestampon a messagés the simu-
lation time at which it is to arrive at its destinationobject.
The arrival of a messaget an objectcauseghat objectto
executean eventat the simulationarrival time. Objects
communicate with onanothersolely by passingnessages,
with no sharedmemorywhats@ver. Exceptfor initializa-
tion andterminationcode,all usercoderunsas part of an
event.

TWOS runs one simulation at a time, with the goal of
compleing that simulation as quickly as possible. Each
node of the parallel processorhosts several objects,
scheduhg them independentlyof all other nodes. The
local object with an unpracessedmessageat the earliest
simulationtime is alwaysrun next. SinceTWOS’ goalis
fast completion of the overall simulation, fairness in
scheduling objects is not a consiceration. Therefore,
TWOS doesnot employ time sliced scheduling. Objects
are only pre-emptedwhen another object receives a
messag@t an earliertime thanthat of the eventcurrently
running.

Sinceeachprocessoschedulesvithout waiting for or con-

suling other processorsat any given instantof real time

the system’sprocessorsnay be working at a wide rangeof

simuldion times. An objectvorking in the simulationpast
can send a messageto another object working in the

simulaion future. If the messagés scheduledo arrive at

a time earlier than the receiving object is currently
handling, the receivermustroll back his computationto

the time of the newly arrived message. Any erroneous
work doneby the out-of-ordercomputationmustbe totally

undone. Undoing the erroneouswork requiresthrowing

away local resultsand sendingmessagecancellationsto

other objects. TWOS is ableto correctly undo any work

donepremadurely, alongwith any side effectsit may have
had. TWOS rollback and messagecancellationis totally

transparent to the appétion program.

At any given momentin a TWOS run, the simulation’s
objects have performedsome work correctly, and some
work in error. TWOS periodically calculatesthe earliest
simuldion time thatcouldstill bein error. Any work done
for simulation times earlier than that time will neverbe
rolled back, and can be committed. Both events and
messagesanbe committed. A committed message is one
that would have beensentin the sequentialrun of the
program,and a committed event is one that would have
beenperformedin the sequentialrun of the program.in

essencethesecommited actionsrepresenthe correctpath
of computationfor a simulation. To meetits definition of
correct behavior,any eventor messageTWOS commits
mustexactlycorrespondo aneventor messagéhatwould
be committedin a sequetial run of the samesimulation,
and every messageor eventin a sequentialrun of the
simulationmustbe matchedby a messager eventin the
committed trace of the parallel run.

The TWOS project has developeda sequentialsimulator
called TWSIM that runs exactly the samesimulationsas
TWOS. TWSIM is a conventionalevent list simulation
engine designedto support application prototyping and
provide single processorperformancefigures. TWSIM

also servesas a useful tool for testing the deterministic
performanceof TWOS, asits executionof an application
must be identical to the committed trace produced by

TWOS. TWSIM usesa centraleventqueueimplemented
as a splay tree, and has been extensively optimized for

speed. It runson one processoif the samehardwareas
TWOS itself. The sequentialsimulator never doeswork

optimistically, and neveneeddo roll backanywork it has
done.

In a productionenvironment,TWSIM would be usedonly
for developingsimulations,not for determiningspeedup
nor validaing determinism. TWOS, if properly designed
and implemented, should produce deterministic results
without the necessityof validating them, so that users
would nevermakeTWSIM runsstrictly for the purposeof

An examplefrom a typical simulation will illustrate the

problem. In a military simulation, a moving unit may enter

the domain of a sector of the battlefield. Sectorsare
usuallyresponsibldor determiningwhich units can detect
other units, so they require completeinformation on the
position and velocity of all units within their boundaries.
When a unit movesfrom one sectorto another,the old
sectorsendsa messagéelling the new sectorto add the
unit to its lists. Meanwhile,the unit may changeits speed.
This changemust be relayedto the new sectorso that it
can properlytrack the unit, so a messagevith the change
of speedis also sentto the sector. In simulation time
order,the messageo addthe unit to the sectorshouldbe
received before the message to change the unit's speed.

In a sequential simulation, this situation causes no
problem. The momentthatthe necessityto changesectors
is noted,an eventwill be postedon the eventlist at the
time of the change. The changeof velocity messagewill

be posted further along the same event list. Since
sequential simulaors simply remove events from the
centraleventlist in simulationtime order, the changeof
sector will be processed before the change of velocity.

But mostdistributedsystemscannotmakegeneralguaran-
tees about the order in which the messageswill be
delivered,unlesscareful orderingprotocolsare used,with

corresponihgly high costs. The change of velocity
messagemay arrive at the procesor hosting the sector
beforethe changeof sectormessage.If the sectorsimply

validating determinism, unless an error had been detectedprocesseshe changeof velocity messageit will flag an

Experience with TWOS has shown that optimistic
executioncan provide excellentspeedupof discreteevent
simulation,despitefairly frequentrollbacksof work done
improperly. TWOS hasachievedspeedupsn excesof 40
times the speedof the same simulation performed by
TWSIM [4].

TWOS is beingusedto developreal simulations,and has
been tested with a variety of simulations, including
military simuldions [3], physics simulations [4],
simulations of computer networks [6], and biological
simulations [7].

Determinism at the User Level

TWOS userswanttheir parallelmachineto behaveexactly
like a single sequentialmachine,but faster. Completely
hiding the parallel natureof the systemis not feasible,if
the simulation designerswant to get good speedupshput
they can reasonablyexpect that anything they do will
produce the same simulation results in parallel as
sequentially.

error, asit doesnot know aboutthe unit. The later arrival
of the changeof sectormessagsds too late to catchthe
changeof velocity messagegeven thought the user had
every reasomo expectthatit would. Thesemessagemust
be processed by the sector in the simulation time order.

The same problem can arise even if the underlying
messagepassing system guaranteesordered delivery of

messagesThe changeof velocity messagandthe change
of sectormessagemay have beersentby two different
objects on two different processorsand the change of

velocity messagenight even have beesentearlierin real

time thanthe othermessage Ordereddelivery aloneis not

a sufficient solution.

Even guaranteeingthat messageswill be delivered in
simuldion time order may not be enough. The two
messagesould be scheduledto arrive at precisely the
samesimulationtime. In the sequentialcase,either this
timing would be all right, and the receiving sectorwould
know it must processthe unit arrival messageefore the
changeof velocity messageor it would be anerror that
would be discoveredwhile debuggingthe simuldion. In

the parallelworld, however,onerun of the programcould
coincidentally deliver the messagesn the proper order,

while the next run delivered them in the improper order.

Non-deterministic handling of these two message®tan
option for this case,nor for simulationsin general. If

messagesire not processedn simulationtime order, the
resulting simulaion doesnot do what the userhas every
right to expectit to do. Two methodsareknownfor han-
dling the problem. Oneis to usea protocolto ensurethat
the earlier messagds handledfirst, regardlessof which
messag@hysicallyarrivesfirst [8]. This methodperforms
poorly for manytypesof simulations. The secondmethod
is to handle whichever message comes in first

immediately, and undo the results if the ordering was
incorrect. This method,implementedoy TWOS, performs
well for a wide variety of simulations, and can give
deterministicresults,if usersfollow certainrules. These
rules are not particularly unusualfor an operatingsystem,
asthey amountto honoing the interfaceprovidedby the
system. Most operatingsystemssequentiabr distributed,
run into trouble when the userattemptsto do things not
specified by the interface.

Themostbasicruleis thatall referenceso anythingunder
the user level of the machinemust go through TWOS.
Users may not referencethe hardwareitself, including
memory locations, hardware clocks, and 1/0O devices.
Usersalso may not examineany internal operatingsystem
information such as the schedulerqueue. More subtly,
they may not use any operatingsystemcall exceptthose
providedby TWOS. TWOS typically runs on top of an
existing operaing system,such as Mach, but usersmust
not putcallsto Machin their programs. For instance user
programsareforbiddento call printf(). Insteadthey must
call a function provided by TWOS called tw_printf().

Theseprecautionsare necessaryfor two reasons. First,
anything outside the scopeof TWOS is inherently non-
determinstic. Hardwareclockswill usuallyhavedifferent
valueseachtime they are consulted,for instance. The
secondreasonis that TWOS may needto roll back and
undo any work done by userobjects,and the userobject
cannotknow, at the time it is running, whetherits work
will berolled backor not. In orderto roll backthe object,
TWOS must have completeknowledgeof everythingthat
the objecthasdone,including changinginternal variables,
sendingmessagegrinting output,andallocatingmemory.
If the userobjectaccessesomethingoutsideof the scope
of TWOS, TWOSwill notbeableto undothe action. For
instancea printf() would have beerprinteddirectly to the
standardoutput,and TWOS cannottrap or undoit. If the
first executionof the eventwasin error, the resultingirre-
versible action would be in error. Evenif the second

exection is identical to the first, the irreversible action
would be performedtwice. The tw_printf() call, on the
other hand,delaysactually sendingthe informationto the
standardoutput until TWOS can be sure that the event
producing it will becommitted. If the eventis rolled back,
the actions taken by the tw_printf() call can be totally
undone.

Requiring usersto work through TWOS is not a major
problem for running discrete event simulations, as such
programsare largely self-containedand do not interact
with the underlying hardware or software very often.
TWOS has provided capabilties for handling the most
frequenttypesof simulationinterad¢ions. Running more
generalprogramswould require adding many additional
capabilities to the current implementation of TWOS.

One important TWOS issue relating to determinismis
handling multiple messages for the same olgétite same
instantin simulationtime. Thesemessagesare handedto
the userobjectin a bundle,allowing the objectto handle
themall at once,if sodesired. To guarantealeterminism,
TWOS must also guaranteea single ordering of a set of
messaged sucha bundlefrom runto run. Thereforethe
orderingof messages a bundlemustnot be by the order
of their arrival. TWOS orders a bundle by the user-
provided messageselector(a field indicating the type of
the message)thenall bytesof the messagedexts. Unless
two messagesre absolutelyidentical, they will always
appearin a deteministic orderwithin the bundle. If they
areidentical, their orderingdoesnot matter,sincethe user
cannot distinguish which is which.

Operating System Implications of Determinism

TWOS is committedto providing a deterministicvirtual

machineto its users,but it cannotrun deterministically
itself, becausethe hardwareand software hosting it are
non-deterministic. TWOS is the layer that provides
determinsm. Despite the non-deteministic nature of

TWOS'’ internal execution,determinismat the userlevel

hasprovidedsomebenefitsin the developmenbf TWOS
itself.

The only systems problem in providing determinism
TWOS facesthat would not arise for other purposesis

ensuringpropermessag®rdering. The only othersources
of non-determiism are blatantly incorreslynchronizton,

which is unaceptableregardlesof the systen's position
on determinism,and applicationsthat use the underlying
hardvareandsoftware which TWOS cannotprevent. The
messageordeing problem for TWOS is actually fairly

simple. The systemmust guaranteethat any committed
event seesthe samemessagesn the sameorder as the
correspondingventin a sequentiatun. The systemnever

knows, when running an event, whether it will be
committed or not, but the committed run will certainly
have the completebundle of messagedor the event, so
TWOS must order them properly. Simply ordering all
messagesn the bundle by their seletors, and, within
selectors,by a byte-for-byte text compargson is almost
sufficient.

The only difficulty is ensuringthatthe byte-by-byteorder-
ings of two supposedlydenticalmessagefrom two differ-
ent runs really are identical. Problemsmay ariseif the
buffer usedo hold the copy of the message&ontainsunini-
tialized fields. If the compiler, or the TWOS memory
managementsystem, allows these fields to contain
different uninitialized values, then supposedlyidentical
messagesould actually contain different contentsfrom
runto run, resultingin different orderingsof the messages.
TWOS solves this problem by ensuring that message
buffersare alwaysclearedbeforebeing givento the user,
and by ensumg that the compiler does not permit any
portions of a structureto contain uninitialized, unzeroed
fields.

TWOS must also provide the necessaryguaranteeghat

rollbackswill occurproperlywhenevemecessaryyundoing
preciselythat work that was donein error. TWOS must
further assurethat the work will be redone correctly.

However theseguaranteearenecessaryor reasonsabove
and beyond determinism. Without such guaranfBag)S

would neverbe able to make any assuanceswhatsoever
that it was operatingin a correctmanner. Properuse of

rollback, messageancellationandre-executions vital to

TWOS, and has been implemented very carefully.

One further problemis providing deterministicresultson
hetergeneous hardware. In the simpler case, an
application run on two different type$ machinemay give
determinisic answers on each type of machine, but
different answers between the classes. Issues of
representationf variousdatatypes(suchasfloating point
numbers)and the order of byteswithin a word can make
providing the same answer across different types of
machines very difficult.

The problemis evenworseif the applicationis run on a
hetergeneousnetwork. In this case,providing eventhe
same results from ruto run on the samesetof hardwares
difficult unless all objects reside on the same processors
all runs. Sincehetergeneityis not the focusof the TWOS
project,little hasbeendoneto dealwith thisissue. TWOS
runs are always done on homogeneous hardware.

Determinism and Debugging

SinceTWOS mustbe guaranteedo producedeterministic
results when applicationsprogramsfollow certain rules,
any non-determinism that appears in a TWOS rwaised
by anerrorin eitherthe applicationor TWOS. Oncethe
application hasbeencheckedto makesureit follows the
rules, the problem is narrowed to TWOS itself.

TWOS keeps statistics that assist in detecting non-
determinsm. The sequentialrun of an appication will

produce a certain number wfessagesentfrom oneobject
to anotheranda certainnumberof eventscauseddy those
messages. (Since an event can be causedby multiple
messageshe two numbersare not necessariljthe same.)
A TWOS run must produceexactly the samenumber of
committedmessageandcommittedevents. TWOS prints
the numberof committedmessageand committedevents
atthe endof the run. By checkingthesenumbersagainst
the numbersproducedby the sequentialversion of the
applicdion, or previousparallelruns, TWOS cancheckfor
obviously non-deterministicesults. (Two differentrunsof
the sameapplication could producethe samenumber of
messagesand events without being exactly the same.
Thesestatisticswould not detectnon-determinismn such
cases. However, the size and complexity of the test
applications make such coincidencesunlikely. If the
possibility of themseemsigh, thenuserlevel resultsfrom
the simulation itself can be checkedagainstthe proper
answer.) In productionmode,the userclearly would not
makea sequetial run to matchevery parallelrun just for
purpose®f validatingdeterminsm. But if the parallelrun
producedsuspiciousanswers,using TWSIM to validate
determinism would be a good place to start debugging.

In many casesmismatchesn the committedstatisticsof
an applicationhave signallederrorsin TWOS. Some of
these errors have beenrelated purely to deterministic
concerns, such as the method of ordering messages.
Others,however,have beerfundamentakrrorslike losing
messagesfailing to roll back properly, or errorsin the
schedulingalgorithms. Evenif onewerewilling to accept
a certainnon-determinisnin the results,thesephenomena
couldonly be regardedaserrorsrequiringcorrection. The
failure of TWOS’ determinsm broughtthemto light much
more quickly thanif we had not demandedeterministic
results from the mechanism.

Once such a problem has been detected, the usual
difficulties of debuggingparallelor distributedcodearise.
Often, the error producingincorrect committed resultsis
itself non-deterministic, so it may not appear on subsequent
runs. Sometimes the problem is based on timing
considerationsso inserting debugying code can make it
disappear.However,an error whosesymptomis incorrect
committed results responds to an intpatdebuggingool.

TWOS can checkthe correctflow of the programagainst
the incorrect results causedby the error, messageby
message and event by event.

A TWSIM run of the applicationcan producea complete
trace of every event that should be performedand the
messagethatcausedt. This traceis calledthe event log.

TWOS can read an eventlog before the run starts and
checkit againsteachmessagend eventcommitted. As

soonasa mismatchis detected,TWOS will halt and call

attentionto the point of divergence. The eventlog has
proven of immense value in delgigg TWOS. It canonly
be used, of course,in a system expectedto produce
deterministic results.

The eventlog is alsousefulfor applicationswriters. First,
it allowsthemto find placesin their programswherethey
have inadvertently broken one of the rules of behavior
necesaryto guaranteeeterminism.In addition,the event

othewise go undetectedor quite a while. Determinism
permits the use of the eventlog, a tool that can help
pinpoint the source of the error.

TWOS’ supportof deterministicresultsis weakfor hetero-
geneous systems. Unless the different machinesuse a
commondataformat, TWOS cannotguarantee¢hata given
set of messagewwill be orderedthe sameway on all
machines, and, hence, cannot guarantee deterministic
results. The problemis similar to heterogeneityproblems
of other distributed systems,and is likely to require the
same kinds of solutions. This work remains to be done.

The event log debugging tool requires certain
improvementsto make it easierto use. The ability to
selectthe objectsand simuation time rangesfor logging
would makethe tool more useful. Thesefeatureswill be
added to the event log tool.

log is helpful if the applications writer has made changes té& checkpoint/restartacility would easedebugging. If a

the program that were not intended to change the
committedresultsof the program,such as convertingto
fasterversionsof sortingandsearchingalgorithms. Again,
if the system could not be counted on to produce
deterministicresults,the eventlog could not be usedthis
way.

The event log, as currently implemented, has certain
limitations. Typical fairly simple discrete event
simulationsmay perform 500,0000r more events. The

simulations run for practical purposemy containmillions

of events. Logs of somanyeventsarehugeandunwieldy.

The current implmentation of TWOS has furthproblems
with large event logs, as they must be storedin main

memorydueto hardvare restrictions. Ideally, eventlogs

should be kept seletively, logging eventsonly for those
objectsthatseemto bein error,andduring thosestretches
of simulationtime whenthe error first appears. Usually,

an examinationof the statisticsand resultsof anincorrect

run can give some hint as to the original sourceof the

error, and this information could be usedto selectively
trace the actual problem area.

Conclusions

Not all systemshavea strict needfor determinism. Since
providing itdoeshavecosts,somesystemanay choosenot
to provideit. However,determinismis a greatboonto the
user,sinceit makesthe virtual machinehe runson appear
more like a sequentialmachine,easingthe problemsof
programmingand debuggingit. Determinism also has
many benefitsfor the designerof the system,asit often
provides an early signal of a systemserror that might

determinismproblemonly manifestsitself in the last five
minutes of a twelve hour run, debuggingit with the
existing tools would be very time consuming. With a
checlpoint/restartfacility, the simulationcould be run up
to the point at which the problem occurs, then
checkpointed. Subsequentdebugging runs would start
from the checkpoint. Checkpoint/restanvill be addedto
TWOS in the future.

TWOS has found the necessity of providing determirtsm
its usersto be a greatboon, aboveandbeyondthe simple
requirenent. In numerouscases,it hasassistedboth the
system designersand the application writers in finding
errors. It alsoprovidesa quick, easycheckfor the correct-
nessof a run. We would recommendanyonedesigninga
distributed system to consider providing deterministic
results to their users.

References

[1] D. JeffersonB. Beckman,F. Wieland,L. Blume, M.
Di Loreto, P. Hontalas,P. Laroche K. Sturdevant,.
Tupman,V. Warren,J. Wedel,H. Younger,and S.
Bellenot,” DistributedSimulationandthe Time Warp
OperatingSystent, ACM Operating Systems Review,
vol. 21, no. 4, 1987.

[2] D. Jefferson,,'Virtual Time,” ACM Transactions on
Programming Languages and Systems, vol. 7, no. 3,
1985.

[3] F.Wieland,L. Hawley, A. FeinbergM. Di Loreto, L.
Blume, J. Ruffles, P. Reiher, B. Beckman, P.
Hontalas, S. Bellenot, “The Performanceof a
Distributed CombatSimulationWith the Time Warp

[4]

[5]

[6]

Operating System, Concurrency: Practice and

Experience, vol. 1, no. 1, p. 35, 1989.

P. Hontalasand B. Beckman,"“Performanceof the
Colliding Pucks Simulation On the Time Warp
OperatingSystem(Part2: A Detailed Analysis); In

Proceedings of the 1989 Summer Computer

Smulation Conference, Clema, J., Ed., Society For

Computer Simulation, San Diego, CA, p. 91, 1989.
Reiher,P. and Jefferson,D. (1990), “Virtual Time

BasedDynamicLoad Managemenin the Time Warp

Operating System’, Transactions of the Society for

Computer Smulation, vol.7, no. 2, July 1990.

M. Presley,M. Ebling, F. Wieland, D. Jefferson,
“Benchmarkingthe Time Warp Operating System
With a Computer Network Simulation] In

Proceedings of the SCS Multiconference on

Distributed Smulation, Unger, B. and Fujimoto, R.,

Eds., Society For ComputerSimulation, San Diego,

CA, p. 8, 1989.

[71 M. Ebling, M. Di Loreto, M. PresleyF. Wieland,and

[8]

D. Jefferson,”An Ant ForagingModel Implemented
On the Time Warp Operating Systenm, In

Proceedings of the SCS Multiconference on

Distributed Smulation, Unger, B. and Fujimoto, R.,

Eds., Society For ComputerSimulation, San Diego,
CA, p. 21, 1989.

K. ChandyandJ. Misra, “AsynchronoudDistributed
Simulation Via a Sequence of Parallel
Computations, Communications of the ACM, vol.

24, no. 4, p. 198, Apr. 1981.

