
TEMPORAL DECOMPOSITION OF SIMULATIONS UNDER
THE TIME WARP OPERATING SYSTEM

Peter Reiher
Jet Propulsion Laboratory

 Steven Bellenot
Florida State University

David Jefferson
UCLA

ABSTRACT

The Time Warp Operating System (TWOS) is a
special-purpose operating system designed to run
event driven simulations on parallel processors using
optimistic synchronization based on virtual time.
TWOS currently achieves speedup by decomposing a
simulation spatially, dividing it into multiple objects
that can be run in parallel. This paper describes how
the simulation can be further decomposed temporally.
Temporal decomposition offers opportunities for
better static load balancing. It also allows further
parallelism by permitting activities of the same object
at different points in simulation time to be run in
parallel. This paper contains the first TWOS
supercritical speedup, achieved by exploiting this
kind of parallelism.

1. INTRODUCTION

The Time Warp Operating System (TWOS) runs
event driven simulations optimistically on parallel
processors, relying on virtual time and rollback as its
fundamental synchronization primitives. Simula-
tions run under TWOS are decomposed into objects.
TWOS achieved speedup by running objects in
parallel. This decomposition was originally spatial in
nature – the application was divided into parts along
space boundaries, and each part ran its own work in a
strictly sequential manner. Because TWOS allowed
each object to proceed at its own pace, objects that
were far ahead in the simulation sometimes had to be
rolled back to handle communications with objects
that are far behind. Nonetheless, each object’s events
were run in exactly their simulation time order, in the
committed trace of the run, with no parallelism within
an object.

But simulations can be decomposed temporally,
as well as spatially. Each object in the simulation can

be divided into pieces that have responsibilities for
different simulation time intervals, and those pieces
can be run in parallel. TWOS has the capability of
performing this temporal decomposition. This paper
describes how TWOS can use temporal
decomposition to extract extra speedup from a
simulation using purely static techniques and presents
some performance results of doing so.

Normally, each node used in a TWOS simulation
is assigned approximately the same amount of work.
However, this method of static load balancing takes
no account of the dynamics of the simulation. One
node may be loaded entirely with objects needing to
do work at the beginning of the simulation, while
another node may have only objects that do work at
the end of the simulation, in which case each of the
two nodes cannot do useful work for much of the
overall simulation. Temporal decomposition allows
independent balancing of the various phases of the
computation

Temporal decomposition can also be used to
increase the potential parallelism of an application
without otherwise changing it. By dividing objects
along time boundaries, sometimes events in the same
object may be able to run in parallel, decreasing the
proportion of the overall work that must be done
sequentially and thereby increasing parallelism.

This paper will describe how temporal decom-
position works. It will also cover methods for using
temporal decomposition to improve the performance
of simulations. It will describe the mechanics of tem-
poral splitting, the use of temporal decomposition to
improve parallel speedups, and static load manage-
ment techniques that use temporal decomposition. It
will present performance results for these mecha-
nisms, including the first recorded case of a TWOS
simulation that beats the critical path speedup of an

application and a realistic simulation that achieves
additional speedup through the use of static temporal
decomposition.

2. THE TIME WARP OPERATING SYSTEM

The Time Warp Operating System (TWOS) runs
event driven simulations on parallel processors using
an optimistic synchronization method based on vir-
tual time. A TWOS simulation is decomposed by the
simulation designer into objects that communicate via
event messages. An arriving message causes an object
to perform an event. TWOS takes care of message de-
livery, scheduling, resource management, and syn-
chronization. TWOS’ synchronization method relies
on rollback and message cancellation to guarantee
results consistent with a normal sequential run of the
simulation. A more complete description of TWOS
can be found in (Jefferson 1987). TWOS currently
runs on the BBN Butterfly GP1000 parallel processor.

A[-•,1700)

1200 1500 1200 1800

1200 1500

Figure 1: A Temporally Split TWOS Object

The fundamental unit of scheduling and migra-
tion in TWOS is a phase. Each object modelled by the
simulation designer consists of one or more phases,
each of which has the responsibility for performing all
events for that object during some interval of simu-
lation time. The total concatenation of all intervals of
an object’s phases runs from -_ (before the start of the
simulation) to +_ (after the end of the simulation), so
that exactly one phase has responsibility for any
simulation instant. The interval of a phase is denoted
by [t1, t2), meaning that the phase has responsibility

for its object’s events from time t1 (inclusive) to time

t2 (exclusive). Any phase can be located on any node

in the distributed system, without regard for the
location of the other phases of the same object.

Phases are produced by a mechanism called
temporal splitting. Temporal splitting allows any

phase to be divided into two smaller phases. An
object is initially composed of a single phase, which
can then be split into an arbitrary number of phases.

Figure 1 shows an object named A divided into
two phases. Each phase has a control block, an input
queue of incoming messages, an output queue
containing copies of outgoing messages, and a queue
of saved states. The first phase runs from virtual
times –_ to 1700, meaning that any messages sent to
this object from the start of the simulation up to, but
not including, virtual time 1700 are handled by this
phase. The second phase covers virtual times 1700 to
+_, so this phase handles any messages sent to the
object from virtual time 1700 to the end of the
simulation.

Only systems that include clear notions of time
as an explicit entity can make use of temporal decom-
position. Unless the system permits optimistic execu-
tion, temporal decomposition will only assist in load
balancing. Besides TWOS, some other systems that
could make full use of temporal decomposition are
Jade’s Time Warp system (Lomow 88), Mitre’s Time
Warp variant (Sokol 90), and the Time Warp imple-
mentation at Rand (Burdorf 90), as well as systems
based on Chandy’s paradigm of space-time (Chandy
90).

3. TWOS’ TEMPORAL SPLITTING MECHANISM

Figure 2 shows the mechanics of performing a
temporal split. Object A exists in a single phase in
figure 2a. This single phase has responsibility for the

full range of virtual times. After a temporal split, the
object consists of two phases, as shown in figure 2b,
each with its own operating system structures. Both
are part of object A, and there is an important
connection between the two phases. The last state in
the state queue of the earlier phase must be the same
state as the first state in the state queue of the later
phase. When an object is temporally split, TWOS
must take responsibility for ensuring that the two
states remain the same.

– •

+ •

Figure 2a: Before a Temporal Split

1000

– • 1000

+ •

Figure 2b: After a Temporal Split

The temporal splitting facility in TWOS works by
issuance of explicit commands to split objects at
particular virtual times. Such a command can be
issued at any time during the run. From the real time
moment at which the temporal split is requested, the
system will guarantee that the object in question will
handle messages with virtual times before the split
time in one phase, and messages after the split in
another phase.

The mechanics of splitting off a new phase are
conceptually simple. In theory, a temporal split
causes the destruction of the phase being split and the
creation of two new phases. The input messages,
output messages, and states of the old phase are
divided between the two new phases according to the
phases’ intervals. In practice, the existing phase is
converted into one of the new phases. The operating
system must allocate a new phase control structure

for the second new phase. Phases are the operating
system entities scheduled for execution, so the new
phase must be linked into the scheduling queue.

The bulk of an object’s important information is
kept in its input queue, output queue, and state
queue. Each entry in each queue is tagged with a
characteristic virtual time. When a phase is split into
two child phases, the information in its queues must
be divided between the two children. Each phase
must get the items that are tagged with virtual times
within its interval.

Whenever the earlier phase completes execution
of all of its input messages, it must send a copy of its
last state to the later phase, which uses it as the initial
state for its first input message. If the earlier phase
rolls back after sending a state to the later phase, it
will have to transmit another state to the later phase
once it recompletes its own computations. The later
phase may have already started execution, in which
case it must also roll back.

Three optimizations permit relatively few
transmissions of states from phase to phase. First, an
earlier phase never sends a state on to a later phase
until the earlier phase has processed the last message
it currently has available, since processing the later
messages will probably create a different state that
will need to be shipped to the later phase.

The second optimization is based on the fact that
states to be sent to other nodes are queued until the
system has time to send them. Whenever a state is to
be sent from one phase to the next, the queue is
searched to see if any other state from the same phase
is waiting to be sent.

The third optimization is based on the fact that
rollbacks do not always actually change states. Some
events are effectively read-only. If an earlier phase
has already sent a state to a later phase, before
sending another it checks to see if the contents are
really different. If not, the second state is not sent.
This method is called the limited jump forward
optimization. (A similar optimization can be applied
within phases, but the cost of always comparing states
outweighs the performance benefits. In the case of
interphase state transfers, the higher cost of shipping
off a new state makes the optimization pay for itself.)

4. TEMPORAL DECOMPOSITION AND LOAD
MANAGEMENT

Simulations run under TWOS can only achieve
their peak performances if the load on the nodes of
the parallel processors is balanced. Otherwise, some
processors will spend part of the run not contributing
to the computation, effectively wasting some process-
ing power. There are two basic methods for
balancing load on TWOS. Static load management
attempts to make a good initial assignment of objects
or phases to nodes, such that most nodes have an
equal share of the work for most of the simulation.
Dynamic load management monitors the course of the
run and shifts objects or phases from node to node to
equalize load.

TWOS is able to perform both kinds of load
management. This paper will not cover dynamic load
management, however. Further information on that
method can be found in (Reiher 90).

The advantages of static load management are
that it is easier to implement and that it does not tend
to have high runtime costs. The disadvantages are
that it requires information that may not be available
before making the run, that it does not necessarily
handle dynamic creation and destruction of objects
well, and that it does not respond well to changes in
the performance characteristics of a run. Temporal
decomposition can help solve this latter difficulty.

The basic method of statically balancing config-
urations for TWOS is to run a sequential simulator
that produces statistics indicating how much process-
ing time each object takes in a complete run. A bin-
packing algorithm then assigns objects to nodes, bal-
ancing only the amount of computation as measured
for the sequential simulation. A clear problem with
this form of static load management is that simula-
tions that undergo drastic phase changes during their
runs will often be poorly balanced by this overall
averaging technique. Since phase changes are fairly
common in many complex simulation models, being
unable to make adjustments can be very costly.

Most distributed processing paradigms can only
address this problem through dynamic load manage-
ment. Their dynamic load management facility must
notice the imbalance and take steps to correct it.
Doing so is difficult, so many distributed systems

have no solution to the problem, at all. TWOS is able
to deal with some situations involving phase changes
with static load balancing using temporal
decomposition.

Dividing objects into phases does not itself
provide any particular advantages. However, if the
system permits phases of the same object to be located
on different nodes, then there are interesting load
management possibilities. Consider an example. A
simulation consists of three objects, A, B, and C. It is
to be run on two nodes of a parallel processor, num-
bered 1 and 2. The simulation consists of three differ-
ent stages, each consisting of approximately one third
of both the real sequential run time and the
simulation time of the application. Object A requires
a large amount of processor time, during the first and
second stages, but does nothing during the third
stage. Object B is very busy during the second and
third stages, but is idle during the first stage. Object
C is very busy during the first and third stages, but
has no work during the middle stage.

If temporal splitting is not available, there is no
good initial configuration for this example. Two
objects must be assigned to one node, and one object
to the other node. Whichever node handles two
objects is going to have some stage during which both
objects are busy. The other node will be idle during
this stage, since its object has nothing to do. The opti-
mistic execution method of TWOS may permit the
second node to get some useful work done during
this stage, by permitting it to jump ahead to the third
stage, but if its work during that stage is dependent
on the results of the other objects’ work during earlier
stages, the optimistic executions will likely have to be
rolled back.

Consider what can be done for this simulation
with temporal splitting. Each object can be divided
into three phases, one for each stage. Each object has
two stages that will need to do a lot of work, and one
stage that will do very little. Node 1 can be assigned
object A’s phase for the first stage, while node 2 gets
the first stage phases for objects B and C. During the
first stage, then, both node 1 and node 2 will have
precisely one phase that needs a large share of the
processor, so both will keep busy with useful work.
Similarly, object A’s phase for the second stage could
be assigned to node 1, while object B’s phase is
assigned to node 2, along with object C’s phase.

Again, each node has precisely one phase that must
do substantial work during this stage, so each node
can be well utilized. During the third stage, when
objects B and C will be busy and object A will be idle,
node 1 can handle the phases for A and B, while node
2 gets the phase for object C. During no stage is a
given node handling more than one busy phase, nor is
any node ever without a busy phase to work on.

Dividing simulations into pieces, each with a
separate static balance, will clearly not help simula-
tions that have a fairly uniform pattern of behavior
throughout the entire run. However, simulations
known to change the patterns of their behavior may
benefit. One such simulation typically run under
TWOS is STB88, a theater level simulation of ground
combat (Wieland 89). This simulation has drastically
different performance characteristics during a stage in
the battle before units engage (up to virtual time 8500)
than it does for the bulk of the run. Since the early
stage takes only a fraction of the time of the steady
state behavior, normal static balances do not produce
very good performance during this stage of the run.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 8 16 24 32

No Splitting

S
p
e
e
d
u
p

Nodes

Figure 3: STB88 Temporal Decomposition Speedup

A initial balance using temporal decomposition
improved STB88’s performance. The correct place to
perform the temporal splits was found using TWOS’
instantaneous speedup tool (Beckman 89). Separate
performance information for each object up to time
8500 and after time 8500 was gathered for the two
stages of the simulation. A static load balancing
program then separately balanced the two different
stages, using temporal splitting to handle cases in
which objects should be on different nodes during the
different stages. The load balancing program
attempted to avoid splitting whenever possible, and
tried to ensure that no node was assigned an
unreasonably large number of objects.

Figure 3 shows the resulting speedups of tempo-
rally split configurations versus the speedup for
normal configurations on varying numbers of nodes.
(Speedup is measured versus an efficient sequential
simulator running the same application code on a
single node of the same machine.) The smallest
speedup improvement obtained via temporal splitting
was 5%. The average improvement was 12%, and
some configurations were speeded up as much as
28%.

The stage of behavior lasting up to time 8500
typically takes around one sixth of the total run time
of the simulation, depending on the particular config-
uration. Most of the performance improvements seen
during the temporal decomposition runs were in this
earlier stage of the simulation, but there were also
noticeable improvements in the later stage. In some
cases, the performance data from the earlier stage of
the run had essentially polluted the balance for the
later stage. When the later stage was balanced solely
on its own data, it ran faster, too.

Dynamic load management can be used to the
same purpose, of course, and in practice would be
preferable, despite the higher costs of automatically
detecting imbalances and migrating phases to correct
them. However, static load management can be used
to get at least some of the same benefits. In certain
circumstances, such as many repetitions of runs with
very similar performance characteristics, static load
management of this form might actually be more effi-
cient. Messages destined for a phase would be deliv-
ered to the right place the first time, rather than
having to be forwarded later on. The system would
already be configured for the phase changes, so it
would incur no delay in responding to them.
Moreover, the system would not need to pay for the
overhead of a dynamic load management facility,
since it had already been reasonably well balanced.

In such circumstances, dynamic load
management could be used to generate the static load
balance. Dynamic load management could keep a
record of where every object resided at every virtual
time for a particular run, and which objects were
migrated at which simulation times. This record
could then be used to generate a better initial
configuration file that uses temporal splitting. For
every object that was moved, the configuration file
would request a temporal split, placing a phase
whose range started at the virtual time of the move on
the node that the object was moved to. The user
could then feed this optimized static configuration
into all subsequent runs of the program. Assuming
that the dynamic load management facility did a good
job in the earlier run, the static configuration should
also produce good results.

The process could be iterated until a good result
was found, or until no further improvements
appeared. At this point, the user could turn off the
dynamic load management facility. This facility
necessarily has a fairly high overhead, since it must
periodically gather and digest complex information.
Also, any time that it chooses to move an object, the
system undergoes some overhead for the movement.
Even if dynamic load management has stabilized to
the point where no objects are moved, it will still
consume some system resources. If the user is
reasonably sure that the dynamic load management
facility will not improve the static configuration
much, then he might be better off not paying for its
overhead.

This method will not work for all simulations.
Some are inherently unstable, so slight changes in
their initial parameters will cause drastic changes in
the simulation’s performance. For such simulations,
temporal splitting and static load management will
have limited value. At the moment, so little is known
about simulation on parallel processors that nothing
can be foretold about how many simulations fit into
the class that can be optimized to a good static
configuration and how many do not. Nor can
anything definite be said about the characteristics of
each class of simulations. Such issues can only be
resolved by further research. Preliminary indications
suggest that at least some simulations of interest
exhibit fairly stable behavior in the face of slight
perturbations.

5. PARALLELISM THROUGH TEMPORAL
DECOMPOSITION

Temporal decomposition has a second potential
benefit. It can allow different phases of the same
object to execute in parallel, potentially increasing the
speedup of the overall simulation. By locating
various phases of an object on different nodes, each
phase of the object can be running simultaneously.

Actually proving speedup gains from this phe-
nomenon is not easy, but one experiment suggests
that such gains are possible. Cassandra (named for its
predictive powers) is a special TWOS application
written specifically to test this mechanism. Cassandra
consists of a number of objects that send each other
messages. However, neither the contents of the
messages nor the contents of the states changes the

pattern of communications. In fact, object states are
never changed at all. Cassandra is thus always able to
produce the results of an event long before all
previous events have been run and messages have
been sent. In some sense, Cassandra is the perfect
simulation for optimistic computation, as, in
principle, nothing ever need be rolled back. In
practice, TWOS cannot always tell this, so Cassandra
runs typically include some rollbacks.

To test the value of temporal decomposition in
providing parallelism, Cassandra was run on ten
nodes and on forty nodes. In the ten node run, each
node had one unsplit Cassandra object. In the forty
node run, each Cassandra object was split into four
phases. Nodes 0 through 9 were each assigned the
first phase of one of the ten objects, nodes 10 through
19 had the second phases, nodes 20 through 29 had
the third phases, and nodes 30 through 39 had the last
phases.

In the absence of parallelism due to temporal de-
composition, the forty node run should take longer
than the ten node run, as states have to be sent from
node to node in the forty node run. However, paral-
lelism from temporal decomposition might regain this
overhead, and more. The later phases can run at the
same time as the earlier phases. Since the earlier
phases will almost never cause them to roll back, any
work done by the later phases will be correct, as soon
as they do it. In essence, temporal decomposition
allows TWOS to run Cassandra’s four different
phases totally in parallel.

The ten node run of Cassandra took 42.5
seconds. The forty node run took 26.3 seconds.
Clearly, the various phases had to do much of their
work in parallel to achieve this improvement in run
time.

This result has two interesting sidelights. First,
this version of Cassandra has only ten objects.
Previous versions of TWOS, and all versions of most
other parallel simulation engines, cannot hope to
improve their speedups by adding more nodes to a
run than there are objects. TWOS’ temporal
decompositions permit objects to be automatically
subdivided, thereby providing more computational
entities to be run in parallel.

The second interesting sidelight is that the 40
node run of Cassandra beats the critical path speedup
possible for that application. Run on an efficient
sequential simulator, Cassandra takes 337 seconds.
The critical path length of the simulation is 36.88
seconds, so the maximum speedup, by critical path
analysis, is 9.2. On ten nodes, TWOS gets a speedup
of 7.9. On forty nodes using temporal decomposition,
TWOS gets a speedup of 12.8, substantially higher
than the critical path speedup.

TWOS has long been known to have the theoret-
ical ability to beat the critical path length of a simu-
lation, due to lazy cancellation (Berry 86). (The lim-
ited jump forward optimization, the state analog to
lazy cancellation for messages, can also cause this
phenomenon.) However, never before has this phe-
nomenon been observed. The reason that Cassandra
run under TWOS can beat the critical path speedup is
that it does not have to perform all events on the crit-
ical path in order. Some of them can be done in paral-
lel, whenever a critical path event proves to produce
the same results without having the output of the
previous event or the complete, proper set of
messages that serve as input to the event.

Cassandra is a highly artificial applications
designed primarily for this test. Real applications will
almost certainly not get such dramatic benefits from
temporal decomposition. However, in certain cases
static temporal decomposition may lead to increased
parallelism, as well as better load balancing, for
realistic applications, thereby extracting a bit more
speedup from the application.

One situation in which a realistic application
could gain benefit from temporal decomposition par-
allelism is for read-mostly objects. By splitting these
objects into phases and spreading the phases across
several nodes, other objects running at different times
could simultaneously consult the read-mostly object.
Assuming that the resulting events don’t change the
state of the read-mostly object, the parallel consulta-
tions would not be rolled back, and could provide a
real performance improvement.

Temporal decomposition also improves certain
of the theoretical symmetries of TWOS. Previously, a
TWOS object could be executing at virtual time 100 at
the same instant in real time that any other TWOS
object was executing at virtual time 200, except for
itself. Temporal splitting removes that exception.

The object may have a different phase with a period
including virtual time 200 in its period on some other
node. That second phase can thus be executing an
event for time 200 at the same instant in real time that
the first phase is handling virtual time 100. Also,
temporal decomposition permits more symmetry
between space and time in TWOS applications, by
permitting the application to be decomposed both
spatially and temporally. These symmetries may lead
to improvements in TWOS.

6. CONCLUSIONS

Temporal decomposition permits a simulation to
be divided along time boundaries in an analogous
way to the spatial decomposition of the simulation
into objects. Automatic temporal decomposition is
only possible for systems that have explicit repre-
sentations of virtual time for their objects.

Temporal decomposition has been shown to
have at least two practical benefits. First, it can lead
to a better static load balance, since it can
accommodate different balancings of objects during
different stages of the computation. Second, it can
provide extra parallelism by permitting a single object
to run several different events simultaneously on
different nodes.

The performance results presented here validate
that TWOS’ dynamic load management strategy,
which is based on temporal splitting and migration of
phases, can produce significant speedup. Clearly, if
the dynamic load management system produced the
same splits and migrates as the static load
management system, with sufficiently low overheads,
the dynamic load management system could gain
comparable benefits to those shown in this paper.
The remaining issues are how to identify when
splitting and migrating are helpful, and lowering the
overheads associated with dynamic load
management.

The current performance results for temporal de-
composition are preliminary, but interesting. Many
more tests are required. It may prove that static use
of temporal decomposition will never provide signifi-
cant benefits for realistic simulations. Only further
testing can tell.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Army Model
Improvement Program (AMIP) Management Office
(AMMO), NASA contract NAS7-918, Task Order RE-
182, Amendment No. 239, ATZL-CAN-DO.

The authors thank Mike Di Loreto, Brian
Beckman, Fred Wieland, Leo Blume, Larry Hawley,
Phil Hontalas, Matt Presley, Joe Ruffles, John Wedel,
Maria Ebling, and Richard Fujimoto for their work
on TWOS and TWOS applications. We also thank

Jack Tupman and Herb Younger for managerial
support, and Harry Jones of AMMO, and John
Shepard and Phil Lauer of CAA for sponsorship.

REFERENCES

Beckman, B.; P. Hontalas; J. Ruffles; F. Wieland; and
D. Jefferson. 1989. “Instantaneous Speedup.” In
Proceedings of the 1989 Summer Computer Simulation
Conference . SCS, San Diego, CA.

Berry, O.. 1986. “Performance Evaluation of the Time
Warp Distributed Simulation Mechanism.” Ph.D.
dissertation, Department of Computer Science,
University of Southern California, Los Angeles, CA.

Burdorf, C. and J. Marti. 1990. “Non-Preemptive
Time Warp Scheduling Algorithms.” Operating
Systems Review 24, no. 2 (Apr.): 7-18.

Chandy K. M. and R. Sherman. 1989. “Space-Time
and Simulation.” In Proceedings of the SCS
Multiconference on Distributed Simulation (Tampa, FL,
March 28-31). SCS, San Diego, CA: 53-57.

Jefferson, D.; et al. 1987. “Distributed Simulation and
the Time Warp Operating System.” ACM Operating
System Review, November 1987.

Lomow, G.; J. Cleary; B. Unger; and D. West. 1988.
“A Performance Study of Time Warp.” In Proceedings
of the SCS Multiconference on Distributed Simulation.
SCS, San Diego, CA.

Reiher, P. and D. Jefferson. 1990. “Virtual Time
Based Dynamic Load Management In the Time Warp
Operating System.” Transactions of the Society for
Computer Simulation 7, no. 2 (Jun): 91-120.

Sokol, L. and B. Stucky. 1990. “MTW: Experimental
Results For a Constrained Optimistic Scheduling
Paradigm.” In Proceedings of the SCS Multiconference
on Distributed Simulation. (San Diego, CA, Jan 17-19).
SCS, San Diego, CA: 169-173.

Wieland, F.; L. Hawley; A. Feinberg; M. Di Loreto,; L.
Blume; J. Ruffles; P. Reiher; B. Beckman; P. Hontalas;
S. Bellenot. 1989. “The Performance of a Distributed
Combat Simulation With the Time Warp Operating
System.” Concurrency: Practice and Experience, 1, no.
1:.35-50.

