PARALLEL SIMULATION USING THE TIME WARP
OPERATING SYSTEM

Peter L. Reiher

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91109

ABSTRACT

The Time Warp OperatingSystemruns discreteeventsimulaions in parallel using
an optimistic synchronizatioormethodbasedon the theory of virtual time. It hashad
greatsuccessn extractingspeedupfrom many simulations,and is now available for
expermertal use. Thefirst half of this tutorial will discusshow to usethe Time Warp
OperatingSystemto write and run discreteeventsimuations. The secondhalf of the
tutorial will cover internalissuesof the implemertation of the Time Warp Operating
System.

1. INTRODUCTION

The Time Warp Operating System (TWOS) runs discrete event simuations on
parallel or distributedhardware with the primary goal of speedingup the simulations.
TWOS usesoptimistic synchronizdion to control parallel discrete event simulations,
permittingeachnodeto work on its local computationsat its own speedwithout regard
for how far aheador behindothernodesare. Shouldsomework be doneout of order,
TWOS will automaticallyroll it back and re-exeute it in the properorder. TWOS
guaranteeghat the parallel exectdion will producethe sameresuts as a sequential
execution, regardess of the amountof work rolled back and redone. TWOS has
demonstratedhe feasibility of using optimistic synchronization methodsfor parallel
discrete event simulation, achieg very good speedups on a variety of simulations.

TWOS has several advantages as a parallel simulation tool.

* TWOS has sped up many discrete event simulations, making some of them run
thirty or forty times as fast as a sequentiakun of the samesimulation. Some of
these simuléons would be very hardto speedup usingany otherparallelsimulation
method.

« TWOS removes the need for simulation writers to worry about
synchronization of a parallel machine. As long as ttaspecifyat whattime they
wish eacheventto occur, TWOS will perform all synchronizationnecessarto
achievethat resultwithout any otheradviceor interventionfrom the user. In par-
ticular, the userneednot worry aboutthe possibility of deadock, nor needthe user
specify communications patterns or lookahead.

* TWOS is not specificto a single classof problems. It hasachievedgood
speedupdor military simulations, physics simuations, simulations of computer
networks,and biological simdations. It canhandleclassesof problemsinvolving
gueueingnetworks,aswell asproblemsinvolving objectsmoving andinteractingin
space. TWOS hasdonewell with both very simple simulationsandfairly complex
simulations.

« TWOS is able to handle some problemsthat causediffi culties for other
parallel simulationmethods. For instance,TWOS permitsdynamicobject creation
during the run.

» The TWOS codeis availablefor experimentalusethroughNASA’s Cosmic
software distribution mechanism.

» TWOS is portable. It hasbeenrun on Caltech/JPLMark 2 Hypercubes,
Caltech/JPWMark 3 Hypercubesthe BNN Butterfly GP1000 networksof Sun3and
Sun4 workstdions, and the Inmos Transputer. It has also been expermentally
ported to other machines.

* TWOS guaranteesdeterministic results identical to those obtained by a
sequential run of the same simulation, and id¢ahfrom run to run under TWOS.

« TWOS contains certain advancedfeatures not presentin other parallel
simulation mechanisms, such as dynamic load management.

TWOS s basedon the theoryof virtual time, asdescribedn [Jefferson1985]. The
systemhasbeenunderdevelopmenat the JetPropulsionLaboratoryfor sevenyears. It
is now a stable,maturesystem. Work continueson TWOS, with the addition of new
features, performance improvement, and documentation.

Other implementationf the Time Warp methodof synchroniing discreteevent
simulations exist. They include Jade’s system [Lomow et al 1988], Fujimoto’s
implementationon the BBN Butterfly [Fujimoto 1990], an experimental system
developedat Rand [Burdorf and Marti 1990], and a partial implementationdone at
Rockwell [Agre et al 1989]. Variants on Time Warp have also been developed,
including work at Mitre [Sokol 1990]. TWOS has certain features not availahley of
theseother implementationsand has beensubjectedto the most careful performance
analysis of any of them.

This tutorial will not stresshe performanceof TWOS, asthat subjecthasbeenwell
coveredelsewhere[Hontalasand Beckman1989; Wieland et al. 1990; Presleyet al.
1989]. But figure 1 doespresentone speedupcurve, to give someidea of TWOS’
perfomance. The applicationin questionis STB88, a theaterlevel combatsimulation.
The curve showsspeedumf TWOS againstexactly the samecoderun on a simulation
engine. The sequentiakimulatorusesa splaytreeto implementa singleeventqueue. It
hasnoneof TWOS’ specialoverheadselatedto rollback and multiple copiesof data,
andhasbeenextensivelyoptimizedto run asfastaspossible. It is run on a singlenode
of the same hawdare as the TWOS runs, in this case, the BBN Butterfly GP1000.

25+

X
X
X

20 -

10 + X

T CODODODO W
X

0 10 20 30 40 50 60 70 80
Nodes
Figure 1. TWOS Speedup of STB88

As the numberof nodesappliedto the problemis increasedTWOS providesbetter
andbetterspeedupuntil it runsinto prodemsaround68 nodes. (The problemsrelateto
static load balanéng.) For this application under TWOS version 2.4, a maximum
speedupof 24.14 was achievedon 60 nodes. Critical path analysisshowsthat the
maximumpossiblespeedugor STB88is 73.7,s0 TWOS extractsl/3 of the critical path
speedugdrom STB88. TWOS hasextractedup to 75% of the critical path speedugdor
other applications.

A secondperformancaneasuref interestis the relative perfor-manceof TWOS on
a Butterfly comparedto a supercomputer. The promise of parallel computingis to
provide performancecomparabldo or betterthana supercomputeat a fraction of the
cost. STB88wasrun on a Cray X-MP to obtainrelative performancedata. The same
code was used as for the Time Warp Buttendily, but the sequentiasimulatorwasused,
ratherthanTime Warp. The codein questionis writtenin C. Normal Cray C compiler
optimization switcheswere used,but the code containslittle vectorizablecompuation.
No handtuning of the applicationwasdonefor the Cray. The Cray run of STB88took
940seconds.TWOSrunningon the Butterfly took 849 secondn 8 nodes. So, for this
application, 8 68020 nodes of a Butterfly were able to outperform aceupputer. (The
Cray Fortrancompileris consideredo producemuchbettercodethantheir C compiler,
the Crayis really meantto run vectorizableprodems,andhandtuning of Cray programs
usually producesextra speed. None the less, TWOS’ relative performanceon this
problem is impressive.)

This tutorial will talk abouttwo majoraspectof TWOS. First, it will discusshow
TWOS s used. It will coverthe basicmodelof computationpresentedo the user,the
user interface,and the methods of designingTWOS applications. It will also cover
testingand measuringTWOS, andthe questionof who might wantto useTWOS. The
secondpart of this tutorial covershow TWOS is implemented. This part of the tutorial
will cover basic TWOS concepts,how TWOS rollback works, commitment,memory
managementdynamic creationof objects,objectlocation, dynamicload management,
TWOS’ use of statistics, and determinism.

2. USING TWOS

Discreteeventsimulationsto berun underTWOS mustbe deconposedinto objects.
A TWOS simulationachievesspeedupby running objectsin parallel, so the numberof
objectsin a simulationprovidesan absoluteupperlimit on the speedugpossible. On the
otherhand,objectsare able to accessheir own local information much more cheaply
than information stored in other objects, so excessivedecompositioncan also be a
limitation on performance.

Objects in the simulation can communicateonly via messages stampedwith
simulation times. Objectsmay not shareany memory whatsoever. The arrival of a
messageat a particular object at a particular simulation time causesan event at that
simulation time. That event will consist of computationby the object using the
message’scontentsand certain data local to the object (called the object’s state).
Usually,aneventwill resultin oneor moremessagebeingsent. Any objectcansenda
messageo any otherobjectto be receivedat any simulationtime later thanthe time of
the event. Objects need not establishcommunicationschannelsbefore exchangng
messagesAn objectmerelysendsa messagevith the nameof the receivingobject,and
TWOS handles the delivery of it to the proper object.

TWOS objectsneverblock whenthey havework to do. Eitherthey havemessages
to process,and do so in the timestampedorder of those messagesor they wait for
messages to arrive. Users may implement constructs that allow objects to wait for certain
things to happerut TWOS itself doesnot providesuchmechanisms(Excessivaiseof
waiting can damageparallel speedup,so simulaion writers are advisedto use them

sparingly.)
2.1 The TWOS User Interface

TWOS has a very simple user interface. However, all interad¢ion with the
underlying operatingsystemand hardwaremust be performedthrough this interface.
The simulation writer cannotaccessraw hardware,nor can he use any underlying
operating system beneath the level of TWOS. Unlesscatnswith thevirtual machine
are performed through TWOS, TWOS cannot gatge correct behavior.

TWOS provideseacheventwith a pointerto its statecalled myState More than
one message can arrive for an object at a given virtual time, but all otthessa single
event,not oneeventpermessage.The eventis givena countof the numberof messages
in numMsgs, and can accessthe ih messagein its messagevector with the call
msgText(i). The message# this messagevector are orderedby message selector, a
user-specifiedfield provided for this purpose, which can be accessedwith the
msgSelector()call. The interface also includes severalmacrosthat make accessing
fields in statesand messagesnore convenient. Any objectcanalwaysget thecurrent
virtual time with the now macro,and canfind out its own name,with the myName()
call. Several other calls give access to some of TWOS’ more advanced capabilities.

Whenan objectneedsto senda messageit usesthe tell() call. This call takesall
information aboutthe messages parametersincluding receiver,receivetime, message
selectortextlength,anda pointerto the text. Fromthis point on, TWOS will handlethe
delivery of the message.

2.2 Ping - A Sample TWOS Simulation

Ping is one of the simplestpossible TWOS applications. It containsonly two
objects,named"ping’ and“pond. When“ping’ receivesa messageit sends‘pond a
messagéeo bereceivedl simuation time unit later. When“pond' receivesa messageit
sendsanothemmessagéo “ping’ 1 simulationtime unit later. Oncea predefinedcutoff
time has been reached, neither object sends any more messages, and the simulation ends.

Leaving out certain bitef codenecessaryo properlyshareinformaion betweerthe
simulationand TWQOS, figure 2 showsa completeimplementationof ping for TWOS,
written in C.

#define CUTOFF 1000
ping_event()

Name me;

[* Get running object’'s name. */
myName (me);

/* No msgs. after CUTOFF */

if (now < CUTOFF)

if (strcmp (me, “ping ")==0)

tell (“pong”, now + 1, 0, 0, NULL);
else

tell (“ping ", now + 1, 0, 0, NULL);

Figure 2. The Ping Simulation For TWOS

This simulationis startedby sendinga messageo “ping” out of a configurationfile
thatcreategnitial objectsandassignghemto nodes. This initial messagevill causean
eventat “ping,” makingthe codefrom figure 2 run. “ping” will send“pond a message,
which will causean event at “pong; sending another messageto “ping.” Until
simulationtime 1000 is reached,*ping’ and “pond will altemate sendingeachother
messages, each message one step further in the future.

This simpleapplicationdoesnot fully exercisethe TWOS userinterface,butit does
give some idea of the format of a TWOS slation.

2.3 Designing TWOS Applications

A good rule for designing TWOS simulationgh&tany entity in the simulationthat
needsto be independentlysimulatedshouldbe anobject. For instance,jn STB88,the
theater level military simulédion discussed earlier, divisions move and fight
independentlybut regmentsdo not. Thereforedivisionsare objectsin that simuldion,
butregmentsarenot. It maybenecessaryo alsoincludeobjectsthatdo notexistin the

real world situation being simulated, such as sectorsof the battlefield or statistics-
gathering objects.

TWOS extracts parallelism by running objects simultaneously on multiple nodes of a
machine. Therefore, the number of objects in a simulation providgspemlimit onthe
highestpossiblespeedup.A simulationwith 20 objectscannotpossiblybe spedup more
than 20 times by TWOS.

The designer must beanamberof otherconsiderationgn mind if the simulationis
to getanywherenearits highestpossiblespeedup. The mostbasicconsideratioris that
the design must have inherent parallelism, or TWOS cannot possibly speedit up.
Consider a simation in which every event sends a message to the next &léng that
eventwhatto do. In sucha casehowevermanyobjectstheremay bein the simulation,
thereis no parallelism. Every eventdependglirectly on everyearlierevent,sono event
canbe correctlyrun until all previouseventshavecompleted. Neither TWOS nor any
other simulation engine that extracts parallelism by running multiple events
simultaneously can possibly speed up such a simulation.

Poor parallelism is usually much less obvious than in this example, but the
simulation designer mustriveto providemanyeventsthatcanbe performedin parallel.
Onemethodof encouragg parallelismis to try to decouplethe actionsof objectsfrom
each other as much as possible.

The designemustalso be awarethat parallelizingthe simuldion itself may not be
enough. If the body of the simulationis paralelized, but the initialization is not, the
early part of the simulation may run very slowly.all /0 passeshrougha singlepoint,
the lack of parallelizationof I/O may slow the systemdown. If all user-levelstatistics
are gathered at a single point, that bottleneck can cause poor performance.

Generally, bottlenecksare to be avoided becausethey tendto concentratelarge
amountsof the computationinto small amountsof processingoower. The bottleneck
computdion is donesequentially ratherthanin parallel,and anyobjectthatdependsn
the results cannot execute correctly in parallel until the sequentialcomputationis
complete. Wheneverthe designerseesan object that must collect information from
many objects before it can distribute results to many other objects, he should be
suspicious of a bottleneck. The designer shoultbtparallelizesuchalgorithms,sothat
many objectsparticipatein processinghe informationon severalnodessimultaneously.
Object behaviorghatmight causebottlenecksncludedoing muchmorethanthe average
amount of computation,or storing the only copy of large amountsof important
information, or including lots of code that is expected to be run very often.

Another manifestation of poor parallelism is a lamigical path. The critical pathof
a simulation is the longest (in executiontime) sequenceof eventsthat have to be
performedsequentially. A simuation may be able, in theory, to havehalf of its work
done in paraél, but if the critical path makes up the other half of the work, no simulation
enginecanspeedt up by morethana factor of two. The simulaion desigrer shouldtry
to visualize the flow of eventsin his simuation as a graph of eventsconnectedby
dependencies.To get good paralel performancea broad, short graphis much better
than a long, naow graph.

UndercertaincircumstancesTWOS canbeatthe critical pathspeedup.No realistic
applicationrun on TWOS haseverdoneso, andthe circumstancesecessaryo beatthe
critical path are ndikely. However,the propertythatpermitsTWOS to potentiallybeat
the critical path speedupcan contributeto the performanceof runsthat do not actually

beatit. This phenomenomependon objectsthat can producecorrectoutputmessages
without having correct input messages.

As stated earlier, the user need not explicitly worry about look-ahead when
designinga TWOS simulation,asthe mechanisndoesnot dependon explicit lookahead
information either for correctness or performance. Nbpéess,havinggoodlookahead
propertieswill contributeto the performanceof a TWOS application. Ratherthan
explicitly quantifyingthe exactamountof lookaheadhowever,the applicationdesigner
should just bearin mind that lookaheadis desiable and try to make decisionsthat
maximize lookahead. TWOS will automatically extract speedupfrom whatever
lookahead the designer included.

Certain types of behavior are inherently sequential,and contribute to reducing
parallelism. For instance, queries areerently sequential.lf objectA asksobjectB for
a pieceof informéation, and objectA cannotdo any usefulwork until objectB answers,
thereis no chanceof A andB executingin paralleluntil the queryreply comesthrough.
The queryis a very temptingconstruct,asit is widely usedin sequentiapprogramming
andappealdo users’intuitions. In somecasesit is the only naturaloption. But TWOS
designers (and pateal designers, in general) should take care to use queries sparingly.

Designersshouldalso considerchangingalgorithmsthat requirea large numberof
objects to be consulted before a decision can be made. |bbgciis senta messagén
turn, doingits work andsendingthe messag®n to the nextobjectin sequencethenthis
portion of the overall computationis highly sequential. The designershould examine
whetherseveralof the objectscan do their subtasksn parallel, without waiting for all
previous stages of the algorithm completing first.

If acertainpieceof datais likely to be consultedmanytimes,or by many objects,
the designershould considerusing a “pushi straegy to diseminateit, ratherthan a
“pull” strategy. Insteadof keepng one copy of the dataat one object,and sendingout
copiesof it to otherobjectsthat requestit (requiringthe otherobjectsto “pull” it from
the centralsource),the central sourcecan sendcopiesof the datato any objectthatis
likely to needit, “pushing it to thembeforetheyrequesit. The“push strategyclearly
avoidsa potentialbottleneck, but it hasanotheradvantageaswell. Assumingthatthe
numberof timesthe datais changedis modestcomparedto the numberof times that
objectsneedto examineit, the “push strategywill resultin fewer messagesentto
distributethe datathanthe “pull” strategy. To “pull” a pieceof data,the objectneeding
the datasendsone messageandthe objectholding the datasendsa second everytime
the datais needed. To “pushi a piece of data, the object holding the data sendsa
messageo every other object interestedin the dataevery time the data changesput
those other objects need never send messages to the central object to look at the data.

Another important performanceconsiderationis that each object’s typical event
shouldperformsufficient computationto pay for the TWOS overhead®f processingt.
Thoseoverheadausually include the cost sendinga messageand the cost of savinga
state. Typically, eventsneedto performabout10 millisecondsor more of computation
on a machine like the Butterfly to overcome this ovethead. Such granularity
considerationsnay influencehow a simulaion shouldbe decomposedandwhat sort of
messages should be sent.

These design considerationsactually have nothing to do with TWOS’ unusual
methodof synchronization. They apply equallywell to othermethodsof synchronizing
parallelprograms. Oneconsideratiorthatis more specificto TWOS s that of temporal

locality. Objectsshouldtry to avoid sendingmessagewery far into the simulation
future. Becauseof TWOS’ style of optimistic execuion, messagesentfar into the
simulationfuture can contributeto overhead. They mustbe storeduntil the receiving
object getsaroundto handlingthem, which is likely to be far in the real-time future.
Also, everytime that an objectthat hasreceivedsucha messageompletesall of the
work it hasat earliertimes, it will try to do the pieceof work for the later time, even
thoughit usuallywill be unreadyto performthat work correctly. Suchbehaviormay
actually do no harm to performance, but it can cause inefficiencies in certain
circumstances.

Generally, TWOS applicationsmust be designedwith paralelism in mind if the
designer hopes to achieve good speedups. TWOS will correctly run any legal
application, even if it does not follow these guidelines, but its performance may be poor.

2.4 Testing and Measuring TWOS Applications

The easiesimethodof debugginga TWOS simulationis to run it on the sequential
simulator. Debuggingon parallelhardwares muchharderthandebuggingon sequential
hardware,and the tools to supportthe effort are better developedfor most sequential
machines.Sincetheinterfaceis preciselythe samefor both the sequentiasimuator and
TWOS itself, and since TWOS guaranteeshe sameresultsas the sequentialsimulator,
the user code can be primarily debugged on the easier platform.

Once an applicatiorunssuccessfullyon the sequentiasimuléor, it canbetestedon
TWOS. If the designersand programmerdave beercareful aboutfollowing the rules
imposed on TWOS apjghitions, this phaseof the tesing shouldbe quick andsmooth. If
not, it will beslow androcky. If severalsuccessiveunsof theapplicaion underTWOS
on severaldifferent numbersof nodesproducethe sameresults,and resultsthat match
the sequential sintator run, then testing can proceed.

At this point, the usermustconsidemwhathe s looking for from the application. If
the point is to test TWOS’ ability to provide speedupiosensitivityto variouschanges
in applicationsthentestingwill proceeddifferently thanif the pointis to obtainresults
from running the simulation. In the former case,a timing run with the sequential
simulatorshouldbe performedto get thebestpossiblesequentiatime for the simulation.
Also, the user might considarakinga specialrun of the sequentiakimulatorto produce
statisticsusedin makingwell balancedconfigurationfiles. Multiple TWOS runsshould
be madefor eachseparateconfiguration. (Three or four runs are usually enoughto
providea goodaveragerun time for a configuration.) Runningon a variety of different
numbers of nodes is suggested.

If the purposeis to extractresultsas quickly as possible,the user should create
configurationfiles that assigneachnodein the run an approximatelyequalnumberof
objects. Suchconfigurationsarenot likely to providethe fastestpossiblerun times, but
are usually the best configurations possible without making a sequential simuhattir
many parameterssuchasinitial positionsof objectsor random numbegeneratoiseeds,
are to be varied, a single sequentialsimulator run may not work very well for many
valuesof the parameéers,sothe usermay be betteroff with a reasonableif not optimal,
configuration file.

If the useris looking for simulation results, there is no reasonto run each
configurationmore thanonce, nor is thereany reasonto run on fewer thanthe largest

numberof nodespossible. TWOS guarameesthatall runswill producethe sameresults
given the sameinputs, so one run with a given setof parameteisettingsshouldalways
give the sameanswers. Generally,the best speedupsare obtainedwith the largest
numbersof nodes,so, unlessthere are obvious factors suggestingthat the application
doesnot haveenoughparallelismto makegooduseof the nodes(suchashavingfewer
objectsin the simulationthan availablenodes),the usershouldinclude all nodesin the
simuation.

2.5 Practical Considerations

TWOS is available through NASA's Cosmic distributigystem andcanbe usedby
anyonewith appropriatehardware. However, TWOS is not suitable for all users.
Generally,if the problemto be solvedis a discrete event simulation, or is readily
mappableinto one, TWOS may prove useful. Using TWOS requiressomeeffort, so
only those applicationsexpectedto provide poor performancesequentiallyshould be
consideredasseriouscandidatesor TWOS. If no parallelhardwareas available thereis
no point in using TWOS. The prodem mustbe decomposablénto a large numberof
objects with suitabde granularities of computation and no inherent, unavoidable
bottlenecks. Finally, the designersand programmeramust be willing to rethink their
programmingstyle,asusingtypical sequentiaprogrammingstylesrarely providesmuch
improvement in perfanance when run in parallel.

TWOS is not suitable if the user is looking for a system that will automatsdigd
up existingsequentiatode. TWOS requiresa particularstyle of programmingo run an
applicationat all; at the minimum, existing codewould haveto be adaptedto fit that
style. Evenif it were,the chance®f gettingsignificantspeeduput of codedesignedo
run sequentiallyare poor. If the applicationin questiondoesnot readily map into a
discrete event simulation, or at least into a program composedof objects that
communicatevia timestampednessagesfWOS is not suitable. If parallelhardwareis
unavailable,using TWOS for anything other than experimentations fruitless. If the
problemhasaninherentandunavoidabldow granularityof computationsuchasa few
dozen microseconds per event, TWOS cannot achieve speedup becaus®wiinia¢ing
costof theovethead. If the programis inherentlysequentialandcannotbe changedo a
parallel implementationneither TWOS nor any other parallelizaion enginewill help
much. Finally, if the cost or difficulty of leamg some new programmirnginciplesand
changingprogrammingstylesis too high, the chanceof gainingmuchbenefitfrom using
old methods of sequential programming on TWOS is low.

If the applicationand environmentdo seemsuitablefor using TWOS, then having
appropriatehardwards the majorissue. Theversionof TWOSreleasedhroughCosmic
runson the BBN Butterfly Plusunderthe Chrysalisoperatingsystem. A future version
will run on the BBN GP1000 under tiMachoperatingsystem. In addition, TWOS runs
on the Caltech/JPLMark 3 Hypercube. TWOS canbe run on networksof Sun3’s and
Sun 4’s. However,the timesharingnatureof thesemachinesand the relatively long
latenciesof the communicationsmedia that typically connectthem make Suns poor
platforms for many applicationsthat would run well on actual parallel processors.
Networksof Sunsare more suitablefor experimentatiorand debuggingof applications
than production runs.

TWOS has beeportedto othermachinesn the past,andwill be portedagainin the
future. In somecasesthe portshaveprovenfairly easy,but otherportshave beewery
difficult. TWOS containsvery little assemblylanguage,what there is being fairly
straightfoward. The major challengein most portsis making the underlyingmessage
passingsystemprovidedby the machine’shardwareand softwarework in concertwith
TWOS. If the platformdoesnot havean existingsystemfor passingnessagefom any
nodeto any node, the port would require writing one. A TWOS port also requires
extensive tuning of machine specific parametersto achieve good performance.
Experimentaportsto seeif the systemcanbe madeto work at all on new hardwaremay
not betoo difficult. Portsresultingin a usablesystemwith good performanceare much
more challenong.

The TWOS packageeleasedhroughCosmicalso containsthe sequentiasimulator
(which canrun on the samemachines)and severaluseful softwaretools for creating
balancedconfigurationfiles and testing and compressinghe resultsof a run. Three
applicdions are also included. One s a slightly more complex versionof ping, the
application shown in figure 2. The second is the game of Oifeethird is calledpucks,
and is a simiation of twodimersionalfrictionlesspucksmovingandcolliding on a table
with cushons [Hontalas and Beckman 1989]. Thepelicaionscanserveasmodelsfor
design of other applications.

3. THE DESIGN OF TWOS

This sectionwill briefly discusssomeof the designissuesof TWOS. It will cover
the basicarchitectureof the system. Also, it will coverseveraimportantfeaturesof the
systemthat could not be implementedin a straightforwvardway becauseof TWOS’
unique sychronization mechanism.

TWOSis notaninteractiveoperatingsystem. In its currentform, it is linked with a
simulationto form a singleload module. Everytime thatthe simulationis to berun, the
load moduleis startedup anew. TWOS exits at the end of the run, returningcontrol to
the underlying operating system.

TWOS is typically run on a parallel processor. Every nodeof the processohasa
completecopy of all executableTWOS code,plus all codefor the particularsimulation
being run. Each node only hosts some of the components of the simulation, however.

Usersdesigningsimulationsfor TWOS decomposehem into objects. Figure 3
shows a TWOS object in its internal represeata It consistof anobjectcontrolblock
(OCB), a queueof input messagesa queueof output messagesand a queueof saved
states. The control block storesinformationaboutthe object,suchasits nameandtype,
andpointersto the otherqueues. The input queuecontainsmessagesentto this object,
orderedby their receivetimes. The output queuecontainscopiesof messagesentby
this objectto otherobjects,orderedby their sendtimes. The statequeuecontainscopies
of the internal statevariablesof the object, with one copy per eventthe objecthasrun,
ordered by the time of the event.

oCB

O)
1500] 1800] 2209 1800] 1800

Input Queue Output Queue

/
1200] | 1504 [1804

State Queue

Object A

Figure 3. A Time Warp Object
3.1 Events and Rollback

TWOS simulationsare composedof events,eachoccuring at exactly one object.
Eventsare causedby the arrival of messages.For instance,n figure 3, a messagdas
just arrivedfor simulationtime 2209. Uponarrival, it is putin the object’sinput queue,
anda field in the object’scontrol block is setto indicatethat the objectneedsto run at
time 2209. Eventually,the schedulerfor the local nodewill determinethatthe eventat
time 2209 is the earliest piece of work for any objectr@mode,and TWOSwill switch
controlto this object. The objectwill startrunningthe event,examiningits messaget
time 2209andthe statefrom the previousevent,at 1800. Most eventswill needto send
messageslf this eventis to senda messageit makesa requesto TWOS. TWOS will
maketwo copiesof the messageidenticalin all waysexceptfor a singlesignbit. The
postive copy of the messagavill be sentto the receivingobject,andthe negativecopy
will be storedin the sendingobject’s output queue. Eventually,the eventwill end.
TWOS thensavesa copy of the stateresultingfrom the eventin the statequeue. That
statewill be usedasinput for the next eventthat the objectruns,assuminghat thereis
no rollback.

Becausel' WOS executeptimistically, its objectsmay computein error. Oncethe
erroris discoveredTWOS mustroll backto a simuation time beforethe error occurred
and re-execute, correcting any mistakes made. Rollback requires keepipteroopies
of the state,ratherthana single copy, so thatthe systemcanaccesghe object’sinternal
variablesat any point in the simulaion. Becauseof rollbacks, the input queuemust
containnot just unpracessednessagedyut also somemessagethat have beerhandled,
sincerollbacksmayrequirerepracessinghem. Handlingrollbacksalsorequireskeeping
copiesof messagethis objecthassent,which is the purposeof the outputqueue. If any
of thesemessageweresentin error, part of the procesf rollback will detectthe error
and usethe copiesstoredin the output queueto cancelthe improperly sentmessages.
TWOS rollbacksmustbe ableto undoany actiontakenby eventsdoneimproperly. If
therollback canundoany suchaction, TWOS canbe guaranteedboth to makeprogress
and to produce the same results as a sequential run.

Figure 4 showsone exampleof a rollback. As describedabove, object A has
executedat time 2209. (The shadingon input queuemessages figure 4 indicatesthat

the messagebavealreadybeenprocessed.)But a new messagearrivesfor time 2038.

This messagshouldhave beermprocessedbeforethe messageat 2209,s0 objectA must

roll back, undoing the effects of running at 2209, and execute first at 2038.
Therollbackwill causethe systemto discardthe statefrom time 2209, asthat state

wasproducedoy executingthe input messageat 2209 out of order. TWOSwill usethe

stateat time 1800asinput for the neweventat 2038. Oncethateventhascompletedjts

resuling state will be used to rerun the event at time 2209. If the event at time 2209 does

not producethe sameoutputmessagen its secondexecution thatit did on its first, the

copy of the messagesentat 2209 storedin the outputqueuewill be usedto cancelthe

positive copy sent to the receiver object.

1800 1400 2’

1200 | 1500 | 180p | 22q9

Object A

Figure 4. An Object About To Roll Back

All rollback synchronizations completelyinvisible to the user,who doesnot need
to include any knowledge of rollback and messagecancellationin his code. The
simulationwill produceexactlythe sameresultsregardles®f how often its objectsroll
back and how many incorrect messages have to be cancelled.

An obviousconcernis whetherTWOS canactuallymakeprogresson a simulation,
or will it berolling backforever,neverdoing any usefulwork. It canbe shownthat, at
any real time instant,somemessagen the systemis the earliestunprocessednessage.
Sincemessagesannotbe sentbackwardin time, and only messagegsauseevents,no
objectwill everexecutean eventat a time earlierthanthis message’s. Therefore,the
earliest messaga the systemwill neverbe cancelledsinceno othermessagevill arrive
at its receivingobjectat an earlier simulationtime. The eventcausedby that earliest
messageif no other,will contributeto the progressof the simulaion. As soonas it
finishes executing,some other messagebecomesthe earliestin the system,and the
process iterates. Eventually, each correct messtdighavehadits turn atbeingearliest,
all events will be processed, and the simulation will terminate correctly.

While TWOS can be guaranteedo make progressthe numberof rollbacks might
limit theamountof speedughatthe systemcanextract. A rollbackis anindicationthat
some processorperformed incorrect work, effectively wasting its time on useless
computation. While useless, this incorrect work ismestessariljharmful. If it doesnot
getin theway of usefulwork thatcould have beemperformednsteadtheincorrectwork
has little cost, other than tliwerheadf handlingandcancellingany messagethatwere
sent.

Typical TWOS runs experiencelarge numbersof rollbacks, but not sufficient
numbergo cripple the performancef the system. In somecasesmoreeventsarerolled
backthanarecommitted,but morenormalnumbersareonefourth to two thirdsasmany
eventsrolled back as committed. On small numbersof nodes,very few eventsare
typically rolled back. As would be expected,speedupis best when the number of
rollbacksis relativelylow. Evenif rolled backwork doesnot getin the way of the rest
of the nodes, it indates that some nodeprocessing power is not being used dffety.

3.2 Commitment and Global Virtual Time

Oneobviousproblemwith the TWOS methodof operationis thatmultiple copiesof
messageandstatesaresaved. Also, messagearesavedafterthey have beemprocessed,
leadingto further wasteof memory. TWOS hasthe potentialto useincredibleamounts
of memory.

Fortunately,not all information producedby the simulationneedbe kept forever.
Any rolled back state or cancelledmessagecan be discarded. More importantly,
wheneverTWOS is certainthat a particularmessagevill definitely be sent,or that the
messagdasdefinitely beencorrectly processedor thatthe statewill neverbe discarded
by a rollback, information can be committed. Committing a piece of memory, either
messag®er state,meanghatthe systemis surethatit hasbeenproperlyhandled,and,as
a result, need no longer be savedto supportrollback and cancellation. Thus, any
committed item’s memory can be reclaimed. This process is dad&ldcollection.

The TWOS memory problem is thus partially reducedto detemining which
informationcanbe committed. Global virtual time (GVT) is usedto identify committed
data. At anyrealtime instantin the simuation’'s run, GVT is definedto be the earliest
simulationtime at which any objectcaneverrun. Sinceobjectsrun whenthey receive
messagesGVT can be calculatedby examiningthe receivetimes of all unprocessed
message the system. The earliesttime of any suchmessages the earliesttime at
which an event can run, so any information with an earlier time can be committed.

In adistributedmemorysystemkeepingtrack of GVT continwuslyis prohibitively
expensiveso TWOS calculatest periodically. In principle, the entire systemcould be
frozen, all messagesnywhere could be examined,and the minimum time declaredas
GVT, after which the systemwould be permittedto run again. However, halting the
systemfor the calculationis wasteful,so TWOS computesGVT while the systemis
running. The greatesdifficultiesin the processare accountingfor messages transit
duringthe computdion, andnodedearningaboutthe GVT calculationat differenttimes.
Briefly, TWOS usesa two-phasealgorithmin which all nodesagreeto startcalculating
GVT, and,onceall nodesknow thatall nodesare calcdating it, local minimum virtual
times are gatheredat eachnode. The overall minimum is then found and broadcast.
More complete details can be found in [Bellenot 1990].

Contraryto intuition, a Time Warp systemcanbe shownto succesklly completea
simulation using no more total memory than the sequentialrun [Jefferson1990], by
cleverly determiningwhich messagesnd statesare absolutelynecessaryat any given
pointin the simulation. Stateshatarenot necessarganbe discardedandmessagegsot
absolutelyneededat the momentcan be returnedto their senders. Runningin sucha
modewould provide very poor performanceput this methodof parallel simulationcan
be guarameedto completeany simulationthat would run sequentiallyin the available

memory. TWOS doesnot currently containall necessaryeaturesto fully achievethis
goal, but it is ableto dealwith tempaary memoryshortagedy returningmessages$o
their senders.

3.3 Dynamic Memory Allocation

In its most basicform, Time Warp assumeghat all memoryusedby an eventis
eitherin a statically sizedstate,or is kept tempoarily on the stack. While simulations
canbe written this way, dynamicmemoryallocationmakesthe task easier,andreduces
inefficient useof memory. Linked lists, trees,and other more complexdatastructures
are easierto work with when dynamic memory allocationsthat persistfrom eventto
event are possible.

The problemfor TWOS s thateveryeventmay resultin a differentversionof each
dynamicallyallocatedpieceof memory. If the memoryis allocatedin one event,and
alteredin a secondthethird eventmustseethe alteredversionof the memory. Butif a
newmessagearrivesbetweerthe first andsecondevent,the resultingeventmustseethe
original allocation, not the alteredversion. Only if multiple versionsare storedcan
TWOS guaranteehat all rollbacksand forward executionswill proceedproperly,and,
like states, they must be stored until they can be committed.

The necessityfor multiple versions,combinedwith the lack of memory mapping
hardware, implies that the user cannot semteialpointersto dynamicmemorysegments
from event to event. TWOS cannot guarantee that the pointertteti@scorrectversion
of the memorysegment. Thus,usersmuststoreonly indirect pointersto their segments.
TWOS providesa call that translateghe indirect pointerinto the actualaddressof the
correctversionof the segment.Within a singleevent,the objectcansafelyreferencehe
segmenby this actualaddress.But whenthe eventends,the actualaddresss no longer
valid. The nexteventmustagainusethe indirectpointerto find the right actualaddress
for its version of the segment.

In many cases,not all dynamic memory segmentsallocated by an object are
accesseduring eachevent. Without further mechaism, TWOS would makecopiesof
all segments for all events, wasting substantial amounts of merrmstead, TWOS uses
a copy-on-demanagcheme. No dynamic memory segmentsare copiedwhen an event
starts. As the object requeststhe physical addressof eachsegmentreal memoryis
allocatedfor a new versionof the segmeniand the previouscontentsof the segmenis
copiedinto the new allocation. Sincethe objectcanonly accesssegmentghroughthe
indirect addresstranslation mechanism, TWOS can always make a new copy of a
segmenteforean objectusesit. If severalsegmentsre not accessedt all during an
event, their contents are never copied and they use no extra memory for that event.

Copyingon demands more expensivethanalwayscopyingif almostall segments
are accessedby almost all events. Experiencewith TWOS has shown that most
simulations do not use their dynamic memory allocations in all events, howeeepy-
on-demand proved faster and used less memory.

3.4 Dynamic Object Creation

Dynamic object creationis not an easyproblemfor TWOS. Objectsare created
dynamically in simulationswhen other objectsissue requestsfor their creation. In

TWOS, sucha requestmay proveto be the resultof anincorrectcomputationthat will
eventuallybe rolled back. Therefore,the dynamiccreationmay needto be undone.
Either the actualcreationmustbe delayeduntil the commit point, or the entire creation
must be able to be undone. Delaying might prove disastrouslyinefficient, so TWOS
must be able to roll back creates.

A secondproblemwith dynamiccreationsarisesbecauseTWOS cannotcount on
orderedmessagelelivery. ObjectG may be createdat simulationtime 3000,andhavea
messagesentto it at simulationtime 3200, but the messagdor 3200 might actually
arrivein realtime (or evenbe sent)beforethe creationis performed. The early message
mustnot be discardedput mustinsteadbe savedso that object G canuseit whenthe
creation does straggle in.

TWOS solves the first problem by treating creation of an object as a message. When
oneobjectneedsto createanother,it sendsa specialcreatemessagéeo the new object.
Shouldthe eventcausingthe creationbe rolled back, the negativecopy of the creation
messagavill be sentto the new object,cancellingthe creationmessageandrolling back
the creation. TWOS can eventually garbagecollect the object control block of the
miscreated object.

TWOS solvesthe secondproblemby viewing the entire universeof possibleobjects
as being in existence. Thosethat have not beencreatedare objectsof type NULL.
NULL objectsneverdo anything,and hencedo not needactual representationg the
system. If amessageomesin for anobjectfor which TWOS doesnot currentlystorea
representationTWOS createsan explicit representationof a NULL object with the
requestechame. The messages queuedup for it, and scheduledto executelike any
othermessage.NULL objects’ eventsare no-ops,so the eventis executedsimply by
marking the messages executed. Shoulda createmessageavith an earlier simulation
time eventuallystragglein, the NULL objectrolls backto the createtime, executeghe
creation message, and re-executes the other message, this time properly.

Shoulda messagdo a NULL objectbe committed,the userhas madea genuine
error. He hassenta messagéo an objectthat was nevercreated. Suchan error would
showup just assurelyin a sequentiatun of the simulationasin a TWOS run. In such
cases,TWOS flagsthe errorandhalts, permittingthe userto gatherdebuging informa-
tion to find his error.

Objectscanalsobe dynamicallydestroyed.Like creation,destrution might needto
be rolled back. Destroyedobjectsare turnedinto NULL objects. If the destructionis
cancelled,they are returnedto their previous state. TWOS objects should only be
destroyedf the userwantstheir spacereclaimed,since messagesentto themwill be
treatedaserrors. If the userwantsothersematics for the destrution of an object, he
should include the required behavior in the model.

3.5 Object Location

The objectscomprisinga TWOS simulation are spreadacrossmany nodesof a
parallelprocessor.Whenone objectneedsto senda messagéo anotherobject, TWOS
must determinewhich node hoststhe destinationobject. Evenif the objectis local,
TWOS mustfind a pointerto the destinationobject’s control block so thatthe message
canbe enqueued.If objectscan movefrom nodeto node,the prodem becomesnore
complex. Object location is actually a classic problem in parallel and distributed

systemsand the TWOS versionof the problem doesnot have any new wrinkles that
matter much to the solution of the problem.

TWOS hasbeendesignedo scalewell. Thus, solutionsinvolving single tablesof
objectlocationsstoredat one node, or keepingcompletecopiesof all locationsat all
nodes,or broadcastingo find the object’'slocation,or doing a searchthroughthe entire
set of nodesfor the object, are not suitable. Instead, TWOS usesa combinationof
known authorities and caching to locate objects.

Every object hasa home node that must always know the object’s location. An
objectis assignedo a home node by hashingits nameto a nodenumber. The hash
function isknown by all nodessothehomenodeof anyobjectcanbe determinedat any
time. If anodedoesnot know the locationof a particularobject,it hasheghe object’s
nameto its homenodeandsendsa requesto thatnode. The homenoderespondswith
the object’s current lotian.

If every messagesent from object to object required querying the home node,
TWOS’ performancewould be terrible. Clearly, nodescan searchtheir own local
schedulerqueueto seeif the objectis local before consulting the home node, and
sometimegheywill thenselvesbe the homenodeof the objectin question. Most often,
however,thesedatastructureswill not havethe necessarynformaion. Sothe resultsof
gueryinghomenodesfor objectlocationsarestoredin a cache. Whenevera nodeneeds
to find anobject,it first consultsits cache. Homenoderequestare only sentwhenthe
informationis notin the cache norin otherlocal datastructures.Wheneverareply to a
request for home node information arrives, the answer is stored in the cache.

The cacheis a fixed size, so occasionallyinformation must be discarded. TWOS
uses a Least Recently Used algorithm to remove items from the cache. Typically, TWOS
achievesan excellenthit ratio for long simulations,99% or above. In mostcasesthe
simuation starts with a flurry of cache misses as all nodes fill up their caches, then settles
down with few or no cache misses for the rest of the run.

Objectsin TWOS can migrate from node to node, so cachedobject location
information may becomeoutdated. An object’'shomenodeis alwaysinformed of any
migration, however. When a messageas deliveredto a node that doesnot have the
requestedabject,thehomenodeis consultedagainto getfreshinformation. Also, cache
entriesfor the objecton both the sendingandreceivingnodesare cleared,so that future
messages will go to the proper node.

3.6 Dynamic Load Management

In orderto achievethe highestperformancea TWOS simulaion mustbalanceits
objectsamongthe availablenodes. Otherwise,an imbalancein the amountof work
available for each node can waste processing power, givingdesdup.Onemethodof
achievinga balanceis to carefully makea single staticassignmentf objectsto nodes.
Generally, this methodis not practical for most situations,as it requiresknowledge
beforehandf how muchwork eachobjectwill perform. Anothermethodis to monitor
the simuldion and dynamcally move work from node to node to maintaina proper
balance. TWOS performs this style of dynamic load managemento extract good
performance from simulations without requiring careful static load balancing.

Periodically, TWOS querieseachnodeto determineeffective utilization, the fraction
of the node’sprocessingpowerbeingusedfor good,committedwork on the simulation.

Work that is rolled back, overhead,and idle time count againsteffective utilization.
SinceTWOS cannotknow at any given instantwhich piecesof uncommited work will
berolled back,only anestimateof a node’seffectiveutilization is available. Nodeswith
high effective utilizations offload work onto nodeswith low effective utilizations, with
the goalsof eveningthe effectiveutilizationsacrossall nodesandincreasinghe average
effective utilization of the nodes.

Work is offloadedin units called phases. An objectis composeddf one or more
phasesany of which can be locatedon any node indegpendentof the location of the
others. A phases a portion of an objectthat handlesall eventsfor the objectfor some
interval of simuation time. Figure5 showsobjectA, from figure 3, divided into two
phasespnecoveringtheinterval [-_, 1700),the otherthe interval [1700,+_). Thefirst
phasehas responsibilityfor the eventfor time 1500, while the secondwould handles
eventsat all timesgreaterthanor equalto 1700. Note thatthe later phasehasa copy of
the last stateof the earlierphasefor time 1500. It cannotrun the eventfor time 1800
without a statefrom the previousevent,which belongedo the earlierphase so the later
phase must have a copy of thre-interval state.

O)
150(1800 2209 1800 184
\ \o J
120q | 1500 1500 | 180p
A[-+,1700) A[1700,+¢)

Object A

Figure 5. An Object Divided Into Two Phases

When the dynamic load managementacility determinesthat a node must move
work to anothemode,the overloadechodefinds the objectthatwhosemovementwould
minimize the differencesin effective utilization betweenthe two nodes. Moving the
entire object would often take a long time and waste much processingpower and
communication®andwidth,sothe objectis split into two phases.The phasemostlikely
to do work in the near real time future is migrated to the underloaded node.

Phasesare migratedsimulationtime by simulationtime. If the secondphaseof
objectA shownin figure 5 wereto be migratedfrom nodel to node2, node 1 would
senda messageao node 2 askingthat nodeto setup an OCB for the incoming phase.
Oncethe OCB wassetup, the earliestsimulationtime packagein the migraing object
would be sent. Thatwould be the stateat time 1500. Oncethathadarrivedat node2,
node 1 would start sendingthe information for time 1800, consistingof one input
message, one state, and two output messages. When they all arriveatontd. will
sendthe lastsimulationtime packagefor time 2209. Whenthe singleinput messagéor
2209 arrives at node 2, the migration is complete.

The destination node can start running a migrating phase before all of its information
has arrived. Any event at a time within the phase’sinterval but earlier than the
simulationtime currentlybeingmigratedcanberun. So,in the migrationjust described,
if a new messagdor object A to be deliveredat 1900 arrived at node 2 before the
information for time 1800 had completelyarrived, the eventat 1900 could not run.
However,as soonasthe last piece of informaion for 1800 arrived, the eventat 1900
could run, even though the migration of time 2209 had not completed.

Dynamic load managemenand object migration are still expermentalfeaturesof
TWOS, andmuchwork remainsbeforetheywill be gererally available. However,they
already achieve good performanceresults. More completeinformation on TWOS’
dynamic load management facility can be found in [Reiher 1990].

3.7 Time Warp Statistics

TWOS keepsextensivestatisticsduring a run. Thesestatisticsallow validation of
the correct behavior of TWOS, and also provide a window ondheseof a TWOSrun.
The statisticsinclude object-by-objectreakdownf the numberof messagesentand
received;the numberof negativemessagesentand received;the numberof messages
committed; the number of events started and completed; the number of events
committed;the numberof statescommitted;the numberof objectscreated;the number
of committedcreatesrachestatistics;jnput, outputandstatequeuestatistics;timesspent
running events; total run time; and many others.

Every TWOS run producesa statisticsfile containingthesenumbers. The file can
be checkedagainstthe known correctresults,andfor internalconsistency.For instance,
thetotal numberof messagesentby all objectsmustequalthe total numberof messages
receivedby all objects. Eventhe slightestdifferencein thesestatigics indicatesan error.
The error might be in the simuléion, which could be breakingone of the rules, or it
could be in TWOS. For instance,the error might be due to a problemin ordeing
messages, or routing messages, or in rollb&btlknerouserrorshave beenliscoveredy
looking at statistics that should have balanced but did not.

The statistics also permit diagnosisof some performanceprobddems for certain
applications. For instance,the statisticscan indicate whethera simulationran slowly
becauseof excessiverollbacks,or becauseat ran low on memory,or becauseof flow
control problems. Adjustmentsin TWOS or the applicationand its configurationcan
then improve the performance.

3.8 Determinism in TWOS

TWOS:is firmly committedto determinism. Two runsof the samesimulationwith
the sameinputswill alwaysproducethe samecommittedresultsunder TWOS, evenif
theyarerun on differentnumbersof nodes. Further, TWOS producegesultsidenticalto
thoseof a strictly sequentialimulatorthat doesnot perform any rollbacksor message
cancellations.

TWOS providesdeterministicresults,not deterministicperformance. While two
identicalrunswill typically provide almostthe sameperformancejn somecasesthere
may be very differentrun times. This variability is, to someextent,unavoidabledueto

the parallelhardwareTWOS runson. Someplatformsprovide more predictableresults
than others, however.

Determinismrequiressome programmerdiscipline by those writing simulations.
The rulesarefairly simple. Theusermay only usethe TWOS interface not systemcalls
from the underlyingsoftware. Also, the usermay not directly accessany hardware. All
interactions with lower levels of hardware and software must pass through TWOS.

The TWOS synchronizatiormechanisms guaranteedo give deteministic resultsif
users follow these rules in writing theimuations, providedmessag®erderingis always
deterministic. For any object, the committed trace of messagedrom one run must
alwaysbe presentedo the objectin exactlythe sameorderasin any otherrun. Unless
two messagearrive for the sameobject at the same simulaion time, TWOS will
guarantee deterministic orderimgthout anyfurtherattention. For messageto the same
objectat the sametime, TWOS guaranteesne deterministicorderingbasedon message
selectors and byte-by-byte comparison of the texts.

4. CONCLUSIONS

The Time Warp Operating System is a working pieceoofethathasproducedvery
good speedupson a wide variety of discrete event simulations. It contains many
importantfeatureghatassistin writing andrunningsimulations,ncluding dynamicload
manageent, dynamic object creation,and dynamic memory allocation. TWOS has
been run on many different parallel platforms, and has dstraded good portability.

Writing applicationsfor TWOS requiresusersto think in termsof parallelism,and
to constrainthemselveso servicesprovidedby TWOS. Unlessthey bearparallelismin
mind while designingandwriting simulations,TWOS is unlikely to producesignificant
speedups for most applications. Improvements in the eagatiolg applicationsandthe
servicesprovidedby TWOS can be expected,but TWOS is unlikely ever to provide
much speedupfor existing sequentialcode or for code written without parallelismin
mind.

TWOS is available for experimentaluse through the NASA Cosmic software
distributionsystem. The versionavailableis fairly stable,and producesgood speedups,
but is not suitable for most serious productraork. Unlessthe experimentabpplication
is suitablefor TWOS, the systemis unlikely to producesatisfyingresults. The codeis
availablein sourceform, allowing anyoneto experimentwith the system,but TWOS s
very different from other systems, so those wishing to modify it are advisetayeful.
Experience has shown that intuitions abpeitformanceandcorrechessvery often prove
wrong whenappliedto TWOS. Only the mostlimited form of supportis availablefor
TWOS.

TWOS is a basic implementationof the Time Warp method of synchronizing
discreteeventsimulations. However, it lacks manyimportantfeatures. Dynamicload
managementequiresmore workbeforeit will be generallyuseful. TWOS doesnot
handleperipheraldevicesvery well, yet, especiallyin casesinvolving managemenof
large amounts of data. Research continues on these and other issues.

On the whole, TWOS appeardgo be a successfukenginefor running discreteevent
simulationsin parallel. It gives good perfomance, runs well for many important
applications,and is fairly stable. Thoseinterestedin parallel simulation methodsor
speeding up large discrete event simulations should investigate TWOS.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Army Model ImprovementProgram (AMIP)
ManagementOffice (AMMO), NASA contract NAS7-918, Task Order RE-182,
Amendment No. 239, ATZL-CAN-DO.

The authorthanksDavid Jeffersonwho originatedthe Time Warp projectandhashada

major hand in all design decisions. He also thanks Mike Di Loreto, Brian Beckman, Fred
Wieland, Leo Blume, Larry Hawley, Phil Hontalas,Matt Presley,Joe Ruffles, John
Wedel, SteveBellenot, Maria Ebling, and Richard Fujimoto for their work on TWOS

and TWOS applications. He thanksJack Tupmanand Herb Younger for managerial
support,and Harry Jonesof AMMO, and John Shepardand Phil Lauer of CAA for
sponsorship.

REFERENCES

Agre, J.,JohnsonA., Tinker, P.,andVopava,S. (1989),“Time Warp, ObjectOriented
Distributed Simulation System(TWOODS); in Proceedings of SES |11, Software
Engineering Symposium, Richardson, TX.

Bellenot, S. (1990), “Global Virtual Time Algorithms;” In Proceedings of the SCS
Multiconference on Distributed Smulation, Nicol, D. Ed., Society For Computer
Simulation, San Diego, CA, 122-130.

Burdorf, C. and Marti, J(1990),“Non-Preemptivdime Warp SchedulingAlgorithms;
Operating Systems Review 24, 2, 7-18.

Fujimoto, R. (1990), “Performanceof Time Warp Under Synthetic Workloads], In
Proceedings of the SCS Multiconference on Distributed Smulation, Nicol, D. Ed.,
Society For Computer Simulation, San Diego, CA, 23-28.

Hontalas,P. andBeckman,B. (1989),“Performanceof the Colliding PucksSimulation
On the Time Warp Operating SystéRart2: A DetailedAnalysis); In Proceedings
of the 1989 Summer Computer Smulation Conference, Clema,J. Ed., Society For
Computer Simulation, San Diego, CA, 91-95.

JeffersonD. (1985), “Virtual Time,” ACM Transactions on Programming Languages
and Systems 7, 3.

Jefferson,D., Beckman,B., Wieland, F., Blume, L., Di Loreto, M., Hontalas,P.,
Laroche,P., SturdevantK., Tupman,J., Warren,V., Wedel,J., Younger,H., and
Bellenot, S(1987)," DistributedSimulationandthe Time Warp OperatingSystent,
ACM Operating Systems Review 21, 4.

Lomow, G., Cleary,J.,Unger,B., andWest,D. (1988),“A Performancetudyof Time
Warp; In Proceedings of the SCS Multiconference on Distributed Smulation,
Unger, B. and Jefferson, D., Eds.,Society EomputerSimulation,SanDiego, CA,
50-55.

Presley,M., Ebling, M., Wieland, F., Jefferson,D. (1989), “Benchmarkingthe Time
Warp OperatingSystemWith a ComputerNetwork Simulation? In Proceedings of
the SCS Multiconference on Distributed Smulation, Unger, B. and Fujimoto, R.,
Eds., Society For Computer Simulation, San Diego, CA, 8-13.

Reiher, P. and Jefferson, D. (1990Jjrtual Time Based Dynamic Load Managemént
the Time Warp Operating SystenT, Transactions of the Society for Computer
Smulation 7, 2.

Sokol, L. and Stucky, B. (1990) “MTW: ExperimentalResults For a Constrained
Optimistic SchedulingParadigni, in Proceedings of the SCS Multiconference on
Distributed Smulation, Nicol, D. Ed., Society For Comput8imulation,SanDiego,
CA, 169-173.

Wieland,F., Hawley, L., FeinbergA., Di Loreto, M., Blume, L., Ruffles,J., Reiher,P.,
Beckman,B., Hontalas,P., Bellenot, S. (1989),“The Performanceof a Distributed
Combat SimulatioWith the Time Warp OperatingSystem, Concurrency: Practice
and Experience 1, 1, 35-50.

